Difference between revisions of "2005 AMC 12B Problems/Problem 6"

(Added a solution using Stewart's Theorem)
Line 21: Line 21:
  
 
~Bowser498
 
~Bowser498
 +
 +
== Solution 3 (Stewart's Theorem) ==
 +
Let <math>BD=k</math>. Then, by Stewart's Theorem,
 +
 +
<math>2k(2+k)+7^2(2+k)=7^2k+8^2\cdot 2
 +
\implies k^2-2k-15=0
 +
\implies k=\boxed{3}</math>
 +
 +
~apsid
 +
  
 
== See also ==
 
== See also ==

Revision as of 12:16, 4 September 2021

The following problem is from both the 2005 AMC 12B #6 and 2005 AMC 10B #10, so both problems redirect to this page.

Problem

In $\triangle ABC$, we have $AC=BC=7$ and $AB=2$. Suppose that $D$ is a point on line $AB$ such that $B$ lies between $A$ and $D$ and $CD=8$. What is $BD$?

$\mathrm{(A)}\ 3      \qquad \mathrm{(B)}\ 2\sqrt{3}      \qquad \mathrm{(C)}\ 4      \qquad \mathrm{(D)}\ 5      \qquad \mathrm{(E)}\ 4\sqrt{2}$

Solutions

Solution 1

Draw height $CH$ (Perpendicular line from point C to line AD). We have that $BH=1$. From the Pythagorean Theorem, $CH=\sqrt{48}$. Since $CD=8$, $HD=\sqrt{8^2-48}=\sqrt{16}=4$, and $BD=HD-1$, so $BD=\boxed{\text{(A)}3}$.

Solution 2 (Trig)

After drawing out a diagram, let $\angle{ABC}=\theta$. By the Law of Cosines, $7^2=2^2+7^2-2(7)(2)\cos{\theta} \rightarrow 0=4-28\cos{\theta} \rightarrow \cos{\theta}=\frac{1}{7}$. In $\triangle CBD$, we have $\angle{CBD}=(180-\theta)$, and using the identity $\cos(180-\theta)=-\cos{\theta}$ and Law of Cosines one more time: $8^2=7^2+x^2-2(7)(x)\left( \frac{-1}{7} \right) \rightarrow 64=49+x^2+2x \rightarrow x^2+2x-15=0$. The only positive value for $x$ is $3$, which gives the length of $\overline{BD}$. Thus the answer is $\boxed{\text{A}}$.

~Bowser498

Solution 3 (Stewart's Theorem)

Let $BD=k$. Then, by Stewart's Theorem,

$2k(2+k)+7^2(2+k)=7^2k+8^2\cdot 2 \implies k^2-2k-15=0 \implies k=\boxed{3}$

~apsid


See also

2005 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2005 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png