Difference between revisions of "1995 AHSME Problems"
(so ugly...) |
m (Fixed link) |
||
(42 intermediate revisions by 15 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{AHSME Problems | ||
+ | |year = 1995 | ||
+ | }} | ||
== Problem 1 == | == Problem 1 == | ||
− | Kim earned scores of 87,83, and 88 on her first three mathematics examinations. If Kim receives a score of 90 on the fourth exam, then her average will | + | Kim earned scores of 87, 83, and 88 on her first three mathematics examinations. If Kim receives a score of 90 on the fourth exam, then her average will |
− | A | + | <math> \mathrm{(A) \ \text{remain the same} } \qquad \mathrm{(B) \ \text{increase by 1} } \qquad \mathrm{(C) \ \text{increase by 2} } \qquad \mathrm{(D) \ \text{increase by 3} } \qquad \mathrm{(E) \ \text{increase by 4} } </math> |
− | B | ||
− | C | ||
− | D | ||
− | E | ||
− | [[1995 | + | [[1995 AHSME Problems/Problem 1|Solution]] |
== Problem 2 == | == Problem 2 == | ||
If <math>\sqrt {2 + \sqrt {x}} = 3</math>, then <math>x =</math> | If <math>\sqrt {2 + \sqrt {x}} = 3</math>, then <math>x =</math> | ||
− | A | + | <math> \mathrm{(A) \ 1 } \qquad \mathrm{(B) \ \sqrt{7} } \qquad \mathrm{(C) \ 7 } \qquad \mathrm{(D) \ 49 } \qquad \mathrm{(E) \ 121 } </math> |
− | B | ||
− | C | ||
− | D | ||
− | E | ||
− | [[1995 | + | [[1995 AHSME Problems/Problem 2|Solution]] |
== Problem 3 == | == Problem 3 == | ||
− | The total in-store price for an appliance is <math>\</math> | + | The total in-store price for an appliance is <math>\textdollar 99.99</math>. A television commercial advertises the same product for three easy payments of <math>\textdollar 29.98</math> and a one-time shipping and handling charge of <math>\textdollar 9.98</math>. How many cents are saved by buying the appliance from the television advertiser? |
− | A | + | <math> \mathrm{(A) \ 6 } \qquad \mathrm{(B) \ 7 } \qquad \mathrm{(C) \ 8 } \qquad \mathrm{(D) \ 9 } \qquad \mathrm{(E) \ 10 } </math> |
− | B | ||
− | C | ||
− | D | ||
− | E | ||
− | [[1995 | + | [[1995 AHSME Problems/Problem 3|Solution]] |
== Problem 4 == | == Problem 4 == | ||
If <math>M</math> is <math>30 \%</math> of <math>Q</math>, <math>Q</math> is <math>20 \%</math> of <math>P</math>, and <math>N</math> is <math>50 \%</math> of <math>P</math>, then <math>\frac {M}{N} =</math> | If <math>M</math> is <math>30 \%</math> of <math>Q</math>, <math>Q</math> is <math>20 \%</math> of <math>P</math>, and <math>N</math> is <math>50 \%</math> of <math>P</math>, then <math>\frac {M}{N} =</math> | ||
− | + | <math> \mathrm{(A) \ \frac {3}{250} } \qquad \mathrm{(B) \ \frac {3}{25} } \qquad \mathrm{(C) \ 1 } \qquad \mathrm{(D) \ \frac {6}{5} } \qquad \mathrm{(E) \ \frac {4}{3} } </math> | |
− | B | ||
− | C | ||
− | D | ||
− | E | ||
− | [[1995 | + | [[1995 AHSME Problems/Problem 4|Solution]] |
== Problem 5 == | == Problem 5 == | ||
A rectangular field is 300 feet wide and 400 feet long. Random sampling indicates that there are, on the average, three ants per square inch through out the field. [12 inches = 1 foot.] Of the following, the number that most closely approximates the number of ants in the field is | A rectangular field is 300 feet wide and 400 feet long. Random sampling indicates that there are, on the average, three ants per square inch through out the field. [12 inches = 1 foot.] Of the following, the number that most closely approximates the number of ants in the field is | ||
− | A | + | <math> \mathrm{(A) \ \text{500 thousand} } \qquad \mathrm{(B) \ \text{5 million} } \qquad \mathrm{(C) \ \text{50 million} } \qquad \mathrm{(D) \ \text{500 million} } \qquad \mathrm{(E) \ \text{5 billion} } </math> |
− | B | ||
− | C | ||
− | D | ||
− | E | ||
− | [[1995 | + | [[1995 AHSME Problems/Problem 5|Solution]] |
== Problem 6 == | == Problem 6 == | ||
− | The figure shown can be folded into the shape of a cube. In the resulting cube, which of the lettered faces is opposite the face marked ? | + | The figure shown can be folded into the shape of a cube. In the resulting cube, which of the lettered faces is opposite the face marked <math>x</math>? |
− | |||
− | |||
− | A. | + | <asy> |
− | B. | + | defaultpen(linewidth(0.7)); |
− | C. | + | path p=origin--(0,1)--(1,1)--(1,2)--(2,2)--(2,3); |
− | D. | + | draw(p^^(2,3)--(4,3)^^shift(2,0)*p^^(2,0)--origin); |
− | E. E | + | draw(shift(1,0)*p, dashed); |
+ | label("$x$", (0.3,0.5), E); | ||
+ | label("$A$", (1.3,0.5), E); | ||
+ | label("$B$", (1.3,1.5), E); | ||
+ | label("$C$", (2.3,1.5), E); | ||
+ | label("$D$", (2.3,2.5), E); | ||
+ | label("$E$", (3.3,2.5), E);</asy> | ||
+ | <math> \mathrm{(A) \ A } \qquad \mathrm{(B) \ B } \qquad \mathrm{(C) \ C } \qquad \mathrm{(D) \ D } \qquad \mathrm{(E) \ E } </math> | ||
− | [[1995 | + | [[1995 AHSME Problems/Problem 6|Solution]] |
== Problem 7 == | == Problem 7 == | ||
− | The radius of Earth at the equator is approximately 4000 miles. Suppose a jet flies once around Earth at a speed of 500 miles per hour relative to Earth. If the flight path is a | + | The radius of Earth at the equator is approximately 4000 miles. Suppose a jet flies once around Earth at a speed of 500 miles per hour relative to Earth. If the flight path is a negligible height above the equator, then, among the following choices, the best estimate of the number of hours of flight is: |
− | A) | + | <math> \mathrm{(A) \ 8 } \qquad \mathrm{(B) \ 25 } \qquad \mathrm{(C) \ 50 } \qquad \mathrm{(D) \ 75 } \qquad \mathrm{(E) \ 100 } </math> |
− | B) | ||
− | C) | ||
− | D) | ||
− | E) 100 | ||
− | [[1995 | + | [[1995 AHSME Problems/Problem 7|Solution]] |
== Problem 8 == | == Problem 8 == | ||
In <math>\triangle ABC</math>, <math>\angle C = 90^\circ, AC = 6</math> and <math>BC = 8</math>. Points <math>D</math> and <math>E</math> are on <math>\overline{AB}</math> and <math>\overline{BC}</math>, respectively, and <math>\angle BED = 90^\circ</math>. If <math>DE = 4</math>, then <math>BD =</math> | In <math>\triangle ABC</math>, <math>\angle C = 90^\circ, AC = 6</math> and <math>BC = 8</math>. Points <math>D</math> and <math>E</math> are on <math>\overline{AB}</math> and <math>\overline{BC}</math>, respectively, and <math>\angle BED = 90^\circ</math>. If <math>DE = 4</math>, then <math>BD =</math> | ||
+ | <asy> | ||
+ | size(100); pathpen = linewidth(0.7); pointpen = black+linewidth(3); | ||
+ | pair A = (0,0), C = (6,0), B = (6,8), D = (2*A+B)/3, E = (2*C+B)/3; D(D("A",A,SW)--D("B",B,NW)--D("C",C,SE)--cycle); D(D("D",D,NW)--D("E",E,plain.E)); D(rightanglemark(D,E,B,16)); D(rightanglemark(A,C,B,16)); | ||
+ | </asy> | ||
+ | <math> \mathrm{(A) \ 5 } \qquad \mathrm{(B) \ \frac {16}{3} } \qquad \mathrm{(C) \ \frac {20}{3} } \qquad \mathrm{(D) \ \frac {15}{2} } \qquad \mathrm{(E) \ 8 } </math> | ||
− | + | [[1995 AHSME Problems/Problem 8|Solution]] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | [[1995 | ||
== Problem 9 == | == Problem 9 == | ||
Consider the figure consisting of a square, its diagonals, and the segments joining the midpoints of opposite sides. The total number of triangles of any size in the figure is | Consider the figure consisting of a square, its diagonals, and the segments joining the midpoints of opposite sides. The total number of triangles of any size in the figure is | ||
+ | <asy> | ||
+ | size(100); defaultpen(linewidth(0.7)); draw(unitsquare^^(0,0)--(1,1)^^(0,1)--(1,0)^^(.5,0)--(.5,1)^^(0,.5)--(1,.5)); | ||
+ | </asy> | ||
+ | <math> \mathrm{(A) \ 10 } \qquad \mathrm{(B) \ 12 } \qquad \mathrm{(C) \ 14 } \qquad \mathrm{(D) \ 16 } \qquad \mathrm{(E) \ 18 } </math> | ||
− | + | [[1995 AHSME Problems/Problem 9|Solution]] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | [[1995 | ||
== Problem 10 == | == Problem 10 == | ||
The area of the triangle bounded by the lines <math>y = x, y = - x</math> and <math>y = 6</math> is | The area of the triangle bounded by the lines <math>y = x, y = - x</math> and <math>y = 6</math> is | ||
− | A | + | <math> \mathrm{(A) \ 12 } \qquad \mathrm{(B) \ 12\sqrt{2} } \qquad \mathrm{(C) \ 24 } \qquad \mathrm{(D) \ 24\sqrt{2} } \qquad \mathrm{(E) \ 36 } </math> |
− | B | ||
− | C | ||
− | D | ||
− | |||
− | [[1995 | + | [[1995 AHSME Problems/Problem 10|Solution]] |
== Problem 11 == | == Problem 11 == | ||
How many base 10 four-digit numbers, <math>N = \underline{a} \underline{b} \underline{c} \underline{d}</math>, satisfy all three of the following conditions? | How many base 10 four-digit numbers, <math>N = \underline{a} \underline{b} \underline{c} \underline{d}</math>, satisfy all three of the following conditions? | ||
− | (i) <math>4,000 \leq N < 6,000;</math> (ii) <math>N</math> is a multiple of 5; (iii) <math>3 \leq b < c \leq 6</math>. | + | <math>\text{(i)}</math> <math>4,000 \leq N < 6,000;</math> |
+ | |||
+ | <math>\text{(ii)}</math> <math>N</math> <math>\text{is a multiple of 5}</math>; | ||
+ | |||
+ | <math>\text{(iii)}</math> <math>3 \leq b < c \leq 6</math>. | ||
+ | |||
− | A | + | <math> \mathrm{(A) \ 10 } \qquad \mathrm{(B) \ 18 } \qquad \mathrm{(C) \ 24 } \qquad \mathrm{(D) \ 36 } \qquad \mathrm{(E) \ 48 } </math> |
− | B | ||
− | C | ||
− | D | ||
− | E | ||
− | [[1995 | + | [[1995 AHSME Problems/Problem 11|Solution]] |
== Problem 12 == | == Problem 12 == | ||
Let <math>f</math> be a linear function with the properties that <math>f(1) \leq f(2), f(3) \geq f(4),</math> and <math>f(5) = 5</math>. Which of the following is true? | Let <math>f</math> be a linear function with the properties that <math>f(1) \leq f(2), f(3) \geq f(4),</math> and <math>f(5) = 5</math>. Which of the following is true? | ||
− | + | <math> \mathrm{(A) \ f(0) < 0 } \qquad \mathrm{(B) \ f(0) = 0 } \qquad \mathrm{(C) \ f(1) < f(0) < f( - 1) } \qquad \mathrm{(D) \ f(0) = 5 } \qquad \mathrm{(E) \ f(0) > 5 } </math> | |
− | B | ||
− | C | ||
− | D | ||
− | E | ||
− | [[1995 | + | [[1995 AHSME Problems/Problem 12|Solution]] |
== Problem 13 == | == Problem 13 == | ||
The addition below is incorrect. The display can be made correct by changing one digit <math>d</math>, wherever it occurs, to another digit <math>e</math>. Find the sum of <math>d</math> and <math>e</math>. | The addition below is incorrect. The display can be made correct by changing one digit <math>d</math>, wherever it occurs, to another digit <math>e</math>. Find the sum of <math>d</math> and <math>e</math>. | ||
− | {{ | + | <math>\begin{tabular}{ccccccc} & 7 & 4 & 2 & 5 & 8 & 6 \\ + & 8 & 2 & 9 & 4 & 3 & 0 \\ \hline 1 & 2 & 1 & 2 & 0 & 1 & 6 \end{tabular}</math> |
− | |||
− | |||
− | A | + | <math>\mathrm{(A) \ 4 } \qquad \mathrm{(B) \ 6 } \qquad \mathrm{(C) \ 8 } \qquad \mathrm{(D) \ 10 } \qquad \mathrm{(E) \ \text{more than 10} }</math> |
− | B | ||
− | C | ||
− | D | ||
− | E | ||
− | [[1995 | + | [[1995 AHSME Problems/Problem 13|Solution]] |
== Problem 14 == | == Problem 14 == | ||
If <math>f(x) = ax^4 - bx^2 + x + 5</math> and <math>f( - 3) = 2</math>, then <math>f(3) =</math> | If <math>f(x) = ax^4 - bx^2 + x + 5</math> and <math>f( - 3) = 2</math>, then <math>f(3) =</math> | ||
− | A | + | <math> \mathrm{(A) \ -5 } \qquad \mathrm{(B) \ -2 } \qquad \mathrm{(C) \ 1 } \qquad \mathrm{(D) \ 3 } \qquad \mathrm{(E) \ 8 } </math> |
− | B | ||
− | C | ||
− | D | ||
− | E | ||
− | [[1995 | + | [[1995 AHSME Problems/Problem 14|Solution]] |
== Problem 15 == | == Problem 15 == | ||
Five points on a circle are numbered 1,2,3,4, and 5 in clockwise order. A bug jumps in a clockwise direction from one point to another around the circle; if it is on an odd-numbered point, it moves one point, and if it is on an even-numbered point, it moves two points. If the bug begins on point 5, after 1995 jumps it will be on point | Five points on a circle are numbered 1,2,3,4, and 5 in clockwise order. A bug jumps in a clockwise direction from one point to another around the circle; if it is on an odd-numbered point, it moves one point, and if it is on an even-numbered point, it moves two points. If the bug begins on point 5, after 1995 jumps it will be on point | ||
+ | <asy> | ||
+ | size(80); defaultpen(linewidth(0.7)+fontsize(10)); draw(unitcircle); | ||
+ | for(int i = 0; i < 5; ++i) { pair P = dir(90-i*72); dot(P); label("$"+string(i+1)+"$",P,1.4*P); } | ||
+ | </asy> | ||
+ | <math> \mathrm{(A) \ 1 } \qquad \mathrm{(B) \ 2 } \qquad \mathrm{(C) \ 3 } \qquad \mathrm{(D) \ 4 } \qquad \mathrm{(E) \ 5 } </math> | ||
− | + | [[1995 AHSME Problems/Problem 15|Solution]] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | [[1995 | ||
== Problem 16 == | == Problem 16 == | ||
− | Anita attends a baseball game in Atlanta and estimates that there are 50,000 fans in attendance. Bob attends a baseball game in Boston and estimates that there are 60,000 fans in attendance. A league official who knows the actual numbers attending the two games | + | Anita attends a baseball game in Atlanta and estimates that there are 50,000 fans in attendance. Bob attends a baseball game in Boston and estimates that there are 60,000 fans in attendance. A league official who knows the actual numbers attending the two games notes that: |
i. The actual attendance in Atlanta is within <math>10 \%</math> of Anita's estimate. | i. The actual attendance in Atlanta is within <math>10 \%</math> of Anita's estimate. | ||
Line 181: | Line 144: | ||
To the nearest 1,000, the largest possible difference between the numbers attending the two games is | To the nearest 1,000, the largest possible difference between the numbers attending the two games is | ||
− | A | + | <math> \mathrm{(A) \ 10000 } \qquad \mathrm{(B) \ 11000 } \qquad \mathrm{(C) \ 20000 } \qquad \mathrm{(D) \ 21000 } \qquad \mathrm{(E) \ 22000 } </math> |
− | B | ||
− | C | ||
− | D | ||
− | E | ||
− | [[1995 | + | [[1995 AHSME Problems/Problem 16|Solution]] |
== Problem 17 == | == Problem 17 == | ||
Given regular pentagon <math>ABCDE</math>, a circle can be drawn that is tangent to <math>\overline{DC}</math> at <math>D</math> and to <math>\overline{AB}</math> at <math>A</math>. The number of degrees in minor arc <math>AD</math> is | Given regular pentagon <math>ABCDE</math>, a circle can be drawn that is tangent to <math>\overline{DC}</math> at <math>D</math> and to <math>\overline{AB}</math> at <math>A</math>. The number of degrees in minor arc <math>AD</math> is | ||
− | + | <asy> | |
− | B | + | defaultpen(linewidth(0.7)); |
− | + | draw(rotate(18)*polygon(5)); | |
− | D | + | real x=0.6180339887; |
− | + | draw(Circle((-x,0), 1)); | |
+ | int i; | ||
+ | for(i=0; i<5; i=i+1) { | ||
+ | dot(origin+1*dir(36+72*i)); | ||
+ | } | ||
+ | label("$B$", origin+1*dir(36+72*0), dir(origin--origin+1*dir(36+72*0))); | ||
+ | label("$A$", origin+1*dir(36+72*1), dir(origin--origin+1*dir(36+72))); | ||
+ | label("$E$", origin+1*dir(36+72*2), dir(origin--origin+1*dir(36+144))); | ||
+ | label("$D$", origin+1*dir(36+72*3), dir(origin--origin+1*dir(36+72*3))); | ||
+ | label("$C$", origin+1*dir(36+72*4), dir(origin--origin+1*dir(36+72*4)));</asy> | ||
− | {{ | + | <math> \mathrm{(A) \ 72 } \qquad \mathrm{(B) \ 108 } \qquad \mathrm{(C) \ 120 } \qquad \mathrm{(D) \ 135 } \qquad \mathrm{(E) \ 144 } </math> |
− | [[ | + | [[1995 AHSME Problems/Problem 17|Solution]] |
== Problem 18 == | == Problem 18 == | ||
− | Two rays with common endpoint <math>O</math> | + | Two rays with common endpoint <math>O</math> form a <math>30^\circ</math> angle. Point <math>A</math> lies on one ray, point <math>B</math> on the other ray, and <math>AB = 1</math>. The maximum possible length of <math>OB</math> is |
− | A | + | <math> \mathrm{(A) \ 1 } \qquad \mathrm{(B) \ \frac {1 + \sqrt {3}}{\sqrt 2} } \qquad \mathrm{(C) \ \sqrt{3} } \qquad \mathrm{(D) \ 2 } \qquad \mathrm{(E) \ \frac{4}{\sqrt{3}} } </math> |
− | B | ||
− | C | ||
− | D | ||
− | E | ||
− | [[1995 | + | [[1995 AHSME Problems/Problem 18|Solution]] |
== Problem 19 == | == Problem 19 == | ||
− | Equilateral triangle <math>DEF</math> is inscribed in equilateral triangle <math>ABC</math> such that <math>\overline{DE} \perp \overline{BC}</math>. The | + | Equilateral triangle <math>DEF</math> is inscribed in equilateral triangle <math>ABC</math> such that <math>\overline{DE} \perp \overline{BC}</math>. The ratio of the area of <math>\triangle DEF</math> to the area of <math>\triangle ABC</math> is |
− | + | <asy> | |
− | A. <math>\frac {1}{6} | + | pathpen = linewidth(0.7); pointpen = black; pointfontpen = fontsize(10); |
− | + | pair B = (0,0), C = (1,0), A = dir(60), D = C*2/3, E = (2*A+C)/3, F = (2*B+A)/3; | |
− | B | + | D(D("A",A,N)--D("B",B,SW)--D("C",C,SE)--cycle); D(D("D",D)--D("E",E,NE)--D("F",F,NW)--cycle); D(rightanglemark(C,D,E,1.5)); |
− | + | </asy> | |
− | C | + | <math> \mathrm{(A) \ \frac {1}{6} } \qquad \mathrm{(B) \ \frac {1}{4} } \qquad \mathrm{(C) \ \frac {1}{3} } \qquad \mathrm{(D) \ \frac {2}{5} } \qquad \mathrm{(E) \ \frac {1}{2} } </math> |
− | |||
− | D | ||
− | |||
− | E | ||
− | [[1995 | + | [[1995 AHSME Problems/Problem 19|Solution]] |
== Problem 20 == | == Problem 20 == | ||
If <math>a,b</math> and <math>c</math> are three (not necessarily different) numbers chosen randomly and with replacement from the set <math>\{1,2,3,4,5 \}</math>, the probability that <math>ab + c</math> is even is | If <math>a,b</math> and <math>c</math> are three (not necessarily different) numbers chosen randomly and with replacement from the set <math>\{1,2,3,4,5 \}</math>, the probability that <math>ab + c</math> is even is | ||
− | |||
<math> \mathrm{(A) \ \frac {2}{5} } \qquad \mathrm{(B) \ \frac {59}{125} } \qquad \mathrm{(C) \ \frac {1}{2} } \qquad \mathrm{(D) \ \frac {64}{125} } \qquad \mathrm{(E) \ \frac {3}{5} } </math> | <math> \mathrm{(A) \ \frac {2}{5} } \qquad \mathrm{(B) \ \frac {59}{125} } \qquad \mathrm{(C) \ \frac {1}{2} } \qquad \mathrm{(D) \ \frac {64}{125} } \qquad \mathrm{(E) \ \frac {3}{5} } </math> | ||
− | [[1995 | + | [[1995 AHSME Problems/Problem 20|Solution]] |
== Problem 21 == | == Problem 21 == | ||
− | Two nonadjacent vertices of a rectangle are (4,3) and (-4,-3), and the coordinates of the other two vertices are integers. The number of such rectangles is | + | Two nonadjacent vertices of a rectangle are <math>(4,3)</math> and <math>(-4,-3)</math>, and the coordinates of the other two vertices are integers. The number of such rectangles is |
− | A | + | <math> \mathrm{(A) \ 1 } \qquad \mathrm{(B) \ 2 } \qquad \mathrm{(C) \ 3 } \qquad \mathrm{(D) \ 4 } \qquad \mathrm{(E) \ 5 } </math> |
− | B | ||
− | C | ||
− | D | ||
− | E | ||
− | [[1995 | + | [[1995 AHSME Problems/Problem 21|Solution]] |
== Problem 22 == | == Problem 22 == | ||
− | A pentagon is formed by cutting a triangular corner from a rectangular piece of paper. The five sides of the pentagon have lengths 13,19,20,25 and 31, although this is not necessarily their order around the pentagon. The area of the pentagon is | + | A pentagon is formed by cutting a triangular corner from a rectangular piece of paper. The five sides of the pentagon have lengths 13, 19, 20, 25 and 31, although this is not necessarily their order around the pentagon. The area of the pentagon is |
− | |||
<math> \mathrm{(A) \ 459 } \qquad \mathrm{(B) \ 600 } \qquad \mathrm{(C) \ 680 } \qquad \mathrm{(D) \ 720 } \qquad \mathrm{(E) \ 745 } </math> | <math> \mathrm{(A) \ 459 } \qquad \mathrm{(B) \ 600 } \qquad \mathrm{(C) \ 680 } \qquad \mathrm{(D) \ 720 } \qquad \mathrm{(E) \ 745 } </math> | ||
− | [[1995 | + | [[1995 AHSME Problems/Problem 22|Solution]] |
== Problem 23 == | == Problem 23 == | ||
− | The sides of a triangle have lengths 11,15, and <math>k</math>, where <math>k</math> is an integer. For how many values of <math>k</math> is the triangle obtuse? | + | The sides of a triangle have lengths 11, 15, and <math>k</math>, where <math>k</math> is an integer. For how many values of <math>k</math> is the triangle obtuse? |
− | |||
<math> \mathrm{(A) \ 5 } \qquad \mathrm{(B) \ 7 } \qquad \mathrm{(C) \ 12 } \qquad \mathrm{(D) \ 13 } \qquad \mathrm{(E) \ 14 } </math> | <math> \mathrm{(A) \ 5 } \qquad \mathrm{(B) \ 7 } \qquad \mathrm{(C) \ 12 } \qquad \mathrm{(D) \ 13 } \qquad \mathrm{(E) \ 14 } </math> | ||
− | [[1995 | + | [[1995 AHSME Problems/Problem 23|Solution]] |
== Problem 24 == | == Problem 24 == | ||
Line 269: | Line 222: | ||
What is <math>A + B + C</math>? | What is <math>A + B + C</math>? | ||
− | |||
<math> \mathrm{(A) \ 6 } \qquad \mathrm{(B) \ 7 } \qquad \mathrm{(C) \ 8 } \qquad \mathrm{(D) \ 9 } \qquad \mathrm{(E) \ 10 } </math> | <math> \mathrm{(A) \ 6 } \qquad \mathrm{(B) \ 7 } \qquad \mathrm{(C) \ 8 } \qquad \mathrm{(D) \ 9 } \qquad \mathrm{(E) \ 10 } </math> | ||
− | [[1995 | + | [[1995 AHSME Problems/Problem 24|Solution]] |
== Problem 25 == | == Problem 25 == | ||
− | A list of five positive integers has mean 12 and range 18. The mode and median are both 8. How many different values are possible for the second largest element of the list? | + | A list of five positive integers has mean 12 and range 18. The mode and median are both 8. How many different values are possible for the second- largest element of the list? |
− | |||
<math> \mathrm{(A) \ 4 } \qquad \mathrm{(B) \ 6 } \qquad \mathrm{(C) \ 8 } \qquad \mathrm{(D) \ 10 } \qquad \mathrm{(E) \ 12 } </math> | <math> \mathrm{(A) \ 4 } \qquad \mathrm{(B) \ 6 } \qquad \mathrm{(C) \ 8 } \qquad \mathrm{(D) \ 10 } \qquad \mathrm{(E) \ 12 } </math> | ||
− | [[1995 | + | [[1995 AHSME Problems/Problem 25|Solution]] |
== Problem 26 == | == Problem 26 == | ||
In the figure, <math>\overline{AB}</math> and <math>\overline{CD}</math> are diameters of the circle with center <math>O</math>, <math>\overline{AB} \perp \overline{CD}</math>, and chord <math>\overline{DF}</math> intersects <math>\overline{AB}</math> at <math>E</math>. If <math>DE = 6</math> and <math>EF = 2</math>, then the area of the circle is | In the figure, <math>\overline{AB}</math> and <math>\overline{CD}</math> are diameters of the circle with center <math>O</math>, <math>\overline{AB} \perp \overline{CD}</math>, and chord <math>\overline{DF}</math> intersects <math>\overline{AB}</math> at <math>E</math>. If <math>DE = 6</math> and <math>EF = 2</math>, then the area of the circle is | ||
− | + | <asy> | |
− | + | defaultpen(linewidth(0.7)); | |
− | + | draw(Circle(origin, 5)); | |
− | + | pair O=origin, A=(-5,0), B=(5,0), C=(0,5), D=(0,-5), F=5*dir(40), E=intersectionpoint(A--B, F--D); | |
+ | draw(A--B^^C--D--F); | ||
+ | dot(O^^A^^B^^C^^D^^E^^F); | ||
+ | markscalefactor=0.05; | ||
+ | draw(rightanglemark(B, O, D)); | ||
+ | label("$A$", A, dir(O--A)); | ||
+ | label("$B$", B, dir(O--B)); | ||
+ | label("$C$", C, dir(O--C)); | ||
+ | label("$D$", D, dir(O--D)); | ||
+ | label("$F$", F, dir(O--F)); | ||
+ | label("$O$", O, NW); | ||
+ | label("$E$", E, SE);</asy> | ||
<math> \mathrm{(A) \ 23 \pi } \qquad \mathrm{(B) \ \frac {47}{2} \pi } \qquad \mathrm{(C) \ 24 \pi } \qquad \mathrm{(D) \ \frac {49}{2} \pi } \qquad \mathrm{(E) \ 25 \pi } </math> | <math> \mathrm{(A) \ 23 \pi } \qquad \mathrm{(B) \ \frac {47}{2} \pi } \qquad \mathrm{(C) \ 24 \pi } \qquad \mathrm{(D) \ \frac {49}{2} \pi } \qquad \mathrm{(E) \ 25 \pi } </math> | ||
− | + | [[1995 AHSME Problems/Problem 26|Solution]] | |
− | [[1995 | ||
== Problem 27 == | == Problem 27 == | ||
Consider the triangular array of numbers with 0,1,2,3,... along the sides and interior numbers obtained by adding the two adjacent numbers in the previous row. Rows 1 through 6 are shown. | Consider the triangular array of numbers with 0,1,2,3,... along the sides and interior numbers obtained by adding the two adjacent numbers in the previous row. Rows 1 through 6 are shown. | ||
− | {{ | + | <cmath>\begin{tabular}{ccccccccccc} & & & & & 0 & & & & & \\ |
− | + | & & & & 1 & & 1 & & & & \\ | |
− | + | & & & 2 & & 2 & & 2 & & & \\ | |
+ | & & 3 & & 4 & & 4 & & 3 & & \\ | ||
+ | & 4 & & 7 & & 8 & & 7 & & 4 & \\ | ||
+ | 5 & & 11 & & 15 & & 15 & & 11 & & 5 \end{tabular}</cmath> | ||
Let <math>f(n)</math> denote the sum of the numbers in row <math>n</math>. What is the remainder when <math>f(100)</math> is divided by 100? | Let <math>f(n)</math> denote the sum of the numbers in row <math>n</math>. What is the remainder when <math>f(100)</math> is divided by 100? | ||
− | |||
<math> \mathrm{(A) \ 12 } \qquad \mathrm{(B) \ 30 } \qquad \mathrm{(C) \ 50 } \qquad \mathrm{(D) \ 62 } \qquad \mathrm{(E) \ 74 } </math> | <math> \mathrm{(A) \ 12 } \qquad \mathrm{(B) \ 30 } \qquad \mathrm{(C) \ 50 } \qquad \mathrm{(D) \ 62 } \qquad \mathrm{(E) \ 74 } </math> | ||
− | [[1995 | + | [[1995 AHSME Problems/Problem 27|Solution]] |
== Problem 28 == | == Problem 28 == | ||
Two parallel chords in a circle have lengths 10 and 14, and the distance between them is 6. The chord parallel to these chords and midway between them is of length <math>\sqrt {a}</math> where <math>a</math> is | Two parallel chords in a circle have lengths 10 and 14, and the distance between them is 6. The chord parallel to these chords and midway between them is of length <math>\sqrt {a}</math> where <math>a</math> is | ||
− | + | <asy> | |
− | + | // note: diagram deliberately not to scale -- azjps | |
+ | void htick(pair A, pair B, real r){ D(A--B); D(A-(r,0)--A+(r,0)); D(B-(r,0)--B+(r,0)); } | ||
+ | size(120); pathpen = linewidth(0.7); pointpen = black+linewidth(3); | ||
+ | real min = -0.6, step = 0.5; | ||
+ | pair[] A, B; D(unitcircle); | ||
+ | for(int i = 0; i < 3; ++i) { | ||
+ | A.push(intersectionpoints((-9,min+i*step)--(9,min+i*step),unitcircle)[0]); B.push(intersectionpoints((-9,min+i*step)--(9,min+i*step),unitcircle)[1]); | ||
+ | D(D(A[i])--D(B[i])); | ||
+ | } | ||
+ | MP("10",(A[0]+B[0])/2,N); | ||
+ | MP("\sqrt{a}",(A[1]+B[1])/2,N); | ||
+ | MP("14",(A[2]+B[2])/2,N); | ||
+ | htick((B[1].x+0.1,B[0].y),(B[1].x+0.1,B[2].y),0.06); MP("6",(B[1].x+0.1,B[0].y/2+B[2].y/2),E); | ||
+ | </asy> | ||
<math> \mathrm{(A) \ 144 } \qquad \mathrm{(B) \ 156 } \qquad \mathrm{(C) \ 168 } \qquad \mathrm{(D) \ 176 } \qquad \mathrm{(E) \ 184 } </math> | <math> \mathrm{(A) \ 144 } \qquad \mathrm{(B) \ 156 } \qquad \mathrm{(C) \ 168 } \qquad \mathrm{(D) \ 176 } \qquad \mathrm{(E) \ 184 } </math> | ||
− | [[1995 | + | [[1995 AHSME Problems/Problem 28|Solution]] |
== Problem 29 == | == Problem 29 == | ||
− | For how many three-element sets of positive integers <math>\{a,b,c\}</math> is it true that <math>a \times b \times c = 2310</math>? | + | For how many three-element sets of distinct positive integers <math>\{a,b,c\}</math> is it true that <math>a \times b \times c = 2310</math>? |
− | |||
<math> \mathrm{(A) \ 32 } \qquad \mathrm{(B) \ 36 } \qquad \mathrm{(C) \ 40 } \qquad \mathrm{(D) \ 43 } \qquad \mathrm{(E) \ 45 } </math> | <math> \mathrm{(A) \ 32 } \qquad \mathrm{(B) \ 36 } \qquad \mathrm{(C) \ 40 } \qquad \mathrm{(D) \ 43 } \qquad \mathrm{(E) \ 45 } </math> | ||
− | [[1995 | + | [[1995 AHSME Problems/Problem 29|Solution]] |
== Problem 30 == | == Problem 30 == | ||
A large cube is formed by stacking 27 unit cubes. A plane is perpendicular to one of the internal diagonals of the large cube and bisects that diagonal. The number of unit cubes that the plane intersects is | A large cube is formed by stacking 27 unit cubes. A plane is perpendicular to one of the internal diagonals of the large cube and bisects that diagonal. The number of unit cubes that the plane intersects is | ||
− | + | <asy> | |
− | + | size(150); defaultpen(linewidth(0.7)); pair slant = (2,1); | |
+ | for(int i = 0; i < 4; ++i) | ||
+ | draw((0,i)--(3,i)^^(i,0)--(i,3)^^(3,i)--(3,i)+slant^^(i,3)--(i,3)+slant); | ||
+ | for(int i = 1; i < 4; ++i) | ||
+ | draw((0,3)+slant*i/3--(3,3)+slant*i/3^^(3,0)+slant*i/3--(3,3)+slant*i/3); | ||
+ | </asy> | ||
<math> \mathrm{(A) \ 16 } \qquad \mathrm{(B) \ 17 } \qquad \mathrm{(C) \ 18 } \qquad \mathrm{(D) \ 19 } \qquad \mathrm{(E) \ 20 } </math> | <math> \mathrm{(A) \ 16 } \qquad \mathrm{(B) \ 17 } \qquad \mathrm{(C) \ 18 } \qquad \mathrm{(D) \ 19 } \qquad \mathrm{(E) \ 20 } </math> | ||
− | [[1995 | + | [[1995 AHSME Problems/Problem 30|Solution]] |
== See also == | == See also == | ||
− | + | ||
* [[AMC 12 Problems and Solutions]] | * [[AMC 12 Problems and Solutions]] | ||
− | |||
* [[Mathematics competition resources]] | * [[Mathematics competition resources]] | ||
+ | |||
+ | {{AHSME box|year=1995|before=[[1994 AHSME]]|after=[[1996 AHSME]]}} | ||
+ | |||
+ | {{MAA Notice}} |
Latest revision as of 21:44, 26 May 2021
1995 AHSME (Answer Key) Printable versions: • AoPS Resources • PDF | ||
Instructions
| ||
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 |
Contents
- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6
- 7 Problem 7
- 8 Problem 8
- 9 Problem 9
- 10 Problem 10
- 11 Problem 11
- 12 Problem 12
- 13 Problem 13
- 14 Problem 14
- 15 Problem 15
- 16 Problem 16
- 17 Problem 17
- 18 Problem 18
- 19 Problem 19
- 20 Problem 20
- 21 Problem 21
- 22 Problem 22
- 23 Problem 23
- 24 Problem 24
- 25 Problem 25
- 26 Problem 26
- 27 Problem 27
- 28 Problem 28
- 29 Problem 29
- 30 Problem 30
- 31 See also
Problem 1
Kim earned scores of 87, 83, and 88 on her first three mathematics examinations. If Kim receives a score of 90 on the fourth exam, then her average will
Problem 2
If , then
Problem 3
The total in-store price for an appliance is . A television commercial advertises the same product for three easy payments of and a one-time shipping and handling charge of . How many cents are saved by buying the appliance from the television advertiser?
Problem 4
If is of , is of , and is of , then
Problem 5
A rectangular field is 300 feet wide and 400 feet long. Random sampling indicates that there are, on the average, three ants per square inch through out the field. [12 inches = 1 foot.] Of the following, the number that most closely approximates the number of ants in the field is
Problem 6
The figure shown can be folded into the shape of a cube. In the resulting cube, which of the lettered faces is opposite the face marked ?
Problem 7
The radius of Earth at the equator is approximately 4000 miles. Suppose a jet flies once around Earth at a speed of 500 miles per hour relative to Earth. If the flight path is a negligible height above the equator, then, among the following choices, the best estimate of the number of hours of flight is:
Problem 8
In , and . Points and are on and , respectively, and . If , then
Problem 9
Consider the figure consisting of a square, its diagonals, and the segments joining the midpoints of opposite sides. The total number of triangles of any size in the figure is
Problem 10
The area of the triangle bounded by the lines and is
Problem 11
How many base 10 four-digit numbers, , satisfy all three of the following conditions?
;
.
Problem 12
Let be a linear function with the properties that and . Which of the following is true?
Problem 13
The addition below is incorrect. The display can be made correct by changing one digit , wherever it occurs, to another digit . Find the sum of and .
Problem 14
If and , then
Problem 15
Five points on a circle are numbered 1,2,3,4, and 5 in clockwise order. A bug jumps in a clockwise direction from one point to another around the circle; if it is on an odd-numbered point, it moves one point, and if it is on an even-numbered point, it moves two points. If the bug begins on point 5, after 1995 jumps it will be on point
Problem 16
Anita attends a baseball game in Atlanta and estimates that there are 50,000 fans in attendance. Bob attends a baseball game in Boston and estimates that there are 60,000 fans in attendance. A league official who knows the actual numbers attending the two games notes that:
i. The actual attendance in Atlanta is within of Anita's estimate. ii. Bob's estimate is within of the actual attendance in Boston.
To the nearest 1,000, the largest possible difference between the numbers attending the two games is
Problem 17
Given regular pentagon , a circle can be drawn that is tangent to at and to at . The number of degrees in minor arc is
Problem 18
Two rays with common endpoint form a angle. Point lies on one ray, point on the other ray, and . The maximum possible length of is
Problem 19
Equilateral triangle is inscribed in equilateral triangle such that . The ratio of the area of to the area of is
Problem 20
If and are three (not necessarily different) numbers chosen randomly and with replacement from the set , the probability that is even is
Problem 21
Two nonadjacent vertices of a rectangle are and , and the coordinates of the other two vertices are integers. The number of such rectangles is
Problem 22
A pentagon is formed by cutting a triangular corner from a rectangular piece of paper. The five sides of the pentagon have lengths 13, 19, 20, 25 and 31, although this is not necessarily their order around the pentagon. The area of the pentagon is
Problem 23
The sides of a triangle have lengths 11, 15, and , where is an integer. For how many values of is the triangle obtuse?
Problem 24
There exist positive integers and , with no common factor greater than 1, such that
What is ?
Problem 25
A list of five positive integers has mean 12 and range 18. The mode and median are both 8. How many different values are possible for the second- largest element of the list?
Problem 26
In the figure, and are diameters of the circle with center , , and chord intersects at . If and , then the area of the circle is
Problem 27
Consider the triangular array of numbers with 0,1,2,3,... along the sides and interior numbers obtained by adding the two adjacent numbers in the previous row. Rows 1 through 6 are shown.
Let denote the sum of the numbers in row . What is the remainder when is divided by 100?
Problem 28
Two parallel chords in a circle have lengths 10 and 14, and the distance between them is 6. The chord parallel to these chords and midway between them is of length where is
Problem 29
For how many three-element sets of distinct positive integers is it true that ?
Problem 30
A large cube is formed by stacking 27 unit cubes. A plane is perpendicular to one of the internal diagonals of the large cube and bisects that diagonal. The number of unit cubes that the plane intersects is
See also
1995 AHSME (Problems • Answer Key • Resources) | ||
Preceded by 1994 AHSME |
Followed by 1996 AHSME | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.