Difference between revisions of "2021 AMC 10B Problems/Problem 1"

(There is another solution for this. Instead of rounding pi to the nearest tenth or hundredth, we can round it to the nearest whole number.)
(Removed all unnecessary contents. I merged all contents on the corresponding AMC 12 page.)
(Tag: Replaced)
 
(5 intermediate revisions by 4 users not shown)
Line 1: Line 1:
==Problem==
+
#REDIRECT [[2021 AMC 12B Problems/Problem 1|Solution]]
How many integer values of <math>x</math> satisfy <math>|x|<3\pi</math>?
 
 
 
<math>\textbf{(A)} ~9 \qquad\textbf{(B)} ~10 \qquad\textbf{(C)} ~18 \qquad\textbf{(D)} ~19 \qquad\textbf{(E)} ~20</math>
 
 
 
==Solution 1==
 
Since <math>3\pi</math> is about <math>9.42</math>, we multiply 9 by 2 for the numbers from <math>1</math> to <math>9</math> and the numbers from <math>-1</math> to <math>-9</math> and add 1 to account for the zero to get <math> \boxed{\textbf{(D)}\ ~19} </math>~smarty101 and edited by Tony_Li2007
 
 
 
==Solution 2==
 
<math>3\pi \approx 9.4.</math> There are two cases here.
 
 
 
When <math>x>0, |x|>0,</math> and <math>x = |x|.</math> So then <math>x<9.4</math>
 
 
 
When <math>x<0, |x|>0,</math> and <math>x = -|x|.</math> So then <math>-x<9.4</math>. Dividing by <math>-1</math> and flipping the sign, we get <math>x>-9.4.</math>
 
 
 
From case 1 and 2, we know that <math>-9.4 < x < 9.4</math>. Since <math>x</math> is an integer, we must have <math>x</math> between <math>-9</math> and <math>9</math>. There are a total of <cmath>9-(-9) + 1 = \boxed{\textbf{(D)}\ ~19} \text{ integers}.</cmath>
 
 
 
-PureSwag
 
==Solution 3==
 
<math>|x|<3\pi</math> <math>\iff</math> <math>-3\pi<x<3\pi</math>. Since <math>\pi</math> is approximately <math>3.14</math>, <math>3\pi</math> is approximately <math>9.42</math>. We are trying to solve for <math>-9.42<x<9.42</math>, where <math>x\in\mathbb{Z}</math>. Hence, <math>-9.42<x<9.42</math> <math>\implies</math> <math>-9\leq x\leq9</math>, for <math>x\in\mathbb{Z}</math>. The number of integer values of <math>x</math> is <math>9-(-9)+1=19</math>. Therefore, the answer is <math>\boxed{\textbf{(D)}19}</math>.
 
<br><br>
 
~ {TSun} ~
 
 
 
==Video Solution 1==
 
https://youtu.be/Hv9bQF5x1yQ
 
 
 
~savannahsolver
 
==Solution 4==
 
Looking at the problem, we see that instead of directly saying <math>x</math>, we see that it is <math>|x|.</math> That means all the possible values of <math>x</math> in this case are positive and negative. Rounding <math>\pi</math> to <math>3</math> we get <math>3(3)=9.</math> There are <math>9</math> positive solutions and <math>9</math> negative solutions. <math>9+9=18.</math> But what about zero? Even though zero is neither negative nor positive, but we still need to add it into the solution. Hence, the answer is <math>9+9+1=18+1=\boxed{\textbf{(D)}19}</math>.
 
 
 
~DuoDuoling0
 
 
 
{{AMC10 box|year=2021|ab=B|before=First Problem|num-a=2}}
 

Latest revision as of 04:16, 4 March 2021