Difference between revisions of "2021 AMC 12B Problems/Problem 5"

(Video Solution by TheBeautyofMath)
m (Added in the duplicates.)
Line 1: Line 1:
 +
{{duplicate|[[2021 AMC 10B Problems#Problem 9|2021 AMC 10B #9]] and [[2021 AMC 12B Problems#Problem 5|2021 AMC 12B #5]]}}
 +
 
==Problem==
 
==Problem==
 
The point <math>P(a,b)</math> in the <math>xy</math>-plane is first rotated counterclockwise by <math>90^\circ</math> around the point <math>(1,5)</math> and then reflected about the line <math>y = -x</math>. The image of <math>P</math> after these two transformations is at <math>(-6,3)</math>. What is <math>b - a ?</math>
 
The point <math>P(a,b)</math> in the <math>xy</math>-plane is first rotated counterclockwise by <math>90^\circ</math> around the point <math>(1,5)</math> and then reflected about the line <math>y = -x</math>. The image of <math>P</math> after these two transformations is at <math>(-6,3)</math>. What is <math>b - a ?</math>

Revision as of 07:36, 2 March 2021

The following problem is from both the 2021 AMC 10B #9 and 2021 AMC 12B #5, so both problems redirect to this page.

Problem

The point $P(a,b)$ in the $xy$-plane is first rotated counterclockwise by $90^\circ$ around the point $(1,5)$ and then reflected about the line $y = -x$. The image of $P$ after these two transformations is at $(-6,3)$. What is $b - a ?$

$\textbf{(A)} ~1 \qquad\textbf{(B)} ~3 \qquad\textbf{(C)} ~5 \qquad\textbf{(D)} ~7 \qquad\textbf{(E)} ~9$

Solution

The final image of $P$ is $(-6,3)$. We know the reflection rule for reflecting over $y=-x$ is $(x,y) --> (-y, -x)$. So before the reflection and after rotation the point is $(-3,6)$.

By definition of rotation, the slope between $(-3,6)$ and $(1,5)$ must be perpendicular to the slope between $(a,b)$ and $(1,5)$. The first slope is $\frac{5-6}{1-(-3)} = \frac{-1}{4}$. This means the slope of $P$ and $(1,5)$ is $4$.

Rotations also preserve distance to the center of rotation, and since we only "travelled" up and down by the slope once to get from $(3,-6)$ to $(1,5)$ it follows we shall only use the slope once to travel from $(1,5)$ to $P$.

Therefore point $P$ is located at $(1+1, 5+4) = (2,9)$. The answer is $9-2 = 7 = \boxed{\textbf{(D)}}$.


--abhinavg0627

Video Solution by Punxsutawney Phil

https://youtube.com/watch?v=qpvS2PVkI8A&t=335s

Video Solution by OmegaLearn (Rotation & Reflection tricks)

https://youtu.be/VyRWjgGIsRQ

~ pi_is_3.14

Video Solution by Hawk Math

https://www.youtube.com/watch?v=VzwxbsuSQ80

Video Solution by TheBeautyofMath

https://youtu.be/GYpAm8v1h-U?t=860 (for AMC 10B)

https://youtu.be/EMzdnr1nZcE?t=814 (for AMC 12B)

~IceMatrix

Video Solution by Interstigation

https://youtu.be/DvpN56Ob6Zw?t=776

~Interstigation

See Also

2021 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2021 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png