Difference between revisions of "2006 AMC 12A Problems/Problem 17"
Audiophile (talk | contribs) (→Solution 3: Fixed LaTeX) |
m (minor edit) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
Square <math>ABCD</math> has side length <math>s</math>, a circle centered at <math>E</math> has radius <math>r</math>, and <math>r</math> and <math>s</math> are both rational. The circle passes through <math>D</math>, and <math>D</math> lies on <math>\overline{BE}</math>. Point <math>F</math> lies on the circle, on the same side of <math>\overline{BE}</math> as <math>A</math>. Segment <math>AF</math> is tangent to the circle, and <math>AF=\sqrt{9+5\sqrt{2}}</math>. What is <math>r/s</math>? | Square <math>ABCD</math> has side length <math>s</math>, a circle centered at <math>E</math> has radius <math>r</math>, and <math>r</math> and <math>s</math> are both rational. The circle passes through <math>D</math>, and <math>D</math> lies on <math>\overline{BE}</math>. Point <math>F</math> lies on the circle, on the same side of <math>\overline{BE}</math> as <math>A</math>. Segment <math>AF</math> is tangent to the circle, and <math>AF=\sqrt{9+5\sqrt{2}}</math>. What is <math>r/s</math>? | ||
+ | |||
+ | <center>[[Image:AMC12_2006A_17.png]]</center> | ||
<math> \mathrm{(A) \ } \frac{1}{2}\qquad \mathrm{(B) \ } \frac{5}{9}\qquad \mathrm{(C) \ } \frac{3}{5}\qquad \mathrm{(D) \ } \frac{5}{3}\qquad \mathrm{(E) \ } \frac{9}{5}</math> | <math> \mathrm{(A) \ } \frac{1}{2}\qquad \mathrm{(B) \ } \frac{5}{9}\qquad \mathrm{(C) \ } \frac{3}{5}\qquad \mathrm{(D) \ } \frac{5}{3}\qquad \mathrm{(E) \ } \frac{9}{5}</math> | ||
− | |||
− | |||
== Solution == | == Solution == | ||
− | ===Solution 1=== | + | === Solution 1 === |
One possibility is to use the [[coordinate plane]], setting <math>B</math> at the origin. Point <math>A</math> will be <math>(0,s)</math> and <math>E</math> will be <math>\left(s + \frac{r}{\sqrt{2}},\ s + \frac{r}{\sqrt{2}}\right)</math> since <math>B, D</math>, and <math>E</math> are [[collinear]] and contain a diagonal of <math>ABCD</math>. The [[Pythagorean theorem]] results in | One possibility is to use the [[coordinate plane]], setting <math>B</math> at the origin. Point <math>A</math> will be <math>(0,s)</math> and <math>E</math> will be <math>\left(s + \frac{r}{\sqrt{2}},\ s + \frac{r}{\sqrt{2}}\right)</math> since <math>B, D</math>, and <math>E</math> are [[collinear]] and contain a diagonal of <math>ABCD</math>. The [[Pythagorean theorem]] results in | ||
Line 20: | Line 20: | ||
This implies that <math>rs = 5</math> and <math>s^2 = 9</math>; dividing gives us <math>\frac{r}{s} = \frac{5}{9} \Rightarrow B</math>. | This implies that <math>rs = 5</math> and <math>s^2 = 9</math>; dividing gives us <math>\frac{r}{s} = \frac{5}{9} \Rightarrow B</math>. | ||
− | ===Solution 2=== | + | === Solution 2 === |
First note that angle <math>\angle AFE</math> is right since <math>\overline{AF}</math> is tangent to the circle. Using the Pythagorean Theorem on <math>\triangle AFE</math>, then, we see | First note that angle <math>\angle AFE</math> is right since <math>\overline{AF}</math> is tangent to the circle. Using the Pythagorean Theorem on <math>\triangle AFE</math>, then, we see | ||
<cmath>AE^2 = 9 + 5\sqrt{2} + r^2.</cmath> | <cmath>AE^2 = 9 + 5\sqrt{2} + r^2.</cmath> | ||
Line 34: | Line 34: | ||
Thus, since <math>r</math> and <math>s</math> are rational, <math>s^2 = 9</math> and <math>sr = 5</math>. So <math>s = 3</math>, <math>r = \frac{5}{3}</math>, and <math>\frac{r}{s} = \frac{5}{9}</math>. | Thus, since <math>r</math> and <math>s</math> are rational, <math>s^2 = 9</math> and <math>sr = 5</math>. So <math>s = 3</math>, <math>r = \frac{5}{3}</math>, and <math>\frac{r}{s} = \frac{5}{9}</math>. | ||
− | ===Solution 3=== | + | === Solution 3 === |
(Similar to Solution 1) | (Similar to Solution 1) | ||
First, draw line AE and mark a point Z that is equidistant from E and D so that <math>\angle{DZE} = 90^\circ</math> and that line <math>\overline{AZ}</math> includes point D. Since DE is equal to the radius <math>r</math>, <math>DZ=EZ=\frac{r}{\sqrt2}=\frac{r\sqrt2}{2}.</math> | First, draw line AE and mark a point Z that is equidistant from E and D so that <math>\angle{DZE} = 90^\circ</math> and that line <math>\overline{AZ}</math> includes point D. Since DE is equal to the radius <math>r</math>, <math>DZ=EZ=\frac{r}{\sqrt2}=\frac{r\sqrt2}{2}.</math> | ||
Line 48: | Line 48: | ||
Therefore, <math>\frac{\frac{5}{3}}{3}=\frac{5}{9}=\boxed{B}</math> | Therefore, <math>\frac{\frac{5}{3}}{3}=\frac{5}{9}=\boxed{B}</math> | ||
− | == See | + | == See Also == |
{{AMC12 box|year=2006|ab=A|num-b=16|num-a=18}} | {{AMC12 box|year=2006|ab=A|num-b=16|num-a=18}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
[[Category:Introductory Geometry Problems]] | [[Category:Introductory Geometry Problems]] |
Revision as of 00:00, 19 October 2020
Problem
Square has side length , a circle centered at has radius , and and are both rational. The circle passes through , and lies on . Point lies on the circle, on the same side of as . Segment is tangent to the circle, and . What is ?
Solution
Solution 1
One possibility is to use the coordinate plane, setting at the origin. Point will be and will be since , and are collinear and contain a diagonal of . The Pythagorean theorem results in
This implies that and ; dividing gives us .
Solution 2
First note that angle is right since is tangent to the circle. Using the Pythagorean Theorem on , then, we see
But it can also be seen that . Therefore, since lies on , . Using the Law of Cosines on , we see
Thus, since and are rational, and . So , , and .
Solution 3
(Similar to Solution 1) First, draw line AE and mark a point Z that is equidistant from E and D so that and that line includes point D. Since DE is equal to the radius ,
Note that triangles and share the same hypotenuse , meaning that Plugging in our values we have: By logic and
Therefore,
See Also
2006 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 16 |
Followed by Problem 18 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.