Difference between revisions of "2006 AMC 12A Problems/Problem 18"

 
(17 intermediate revisions by 7 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
 +
The function <math>f</math> has the property that for each real number <math>x</math> in its domain, <math>1/x</math> is also in its domain and
 +
 +
<math>f(x)+f\left(\frac{1}{x}\right)=x</math>
 +
 +
What is the largest set of real numbers that can be in the domain of <math>f</math>?
 +
 +
<math> \mathrm{(A) \ } \{x|x\ne 0\}\qquad \mathrm{(B) \ } \{x|x<0\}</math>
 +
 +
<math>\mathrm{(C) \ } \{x|x>0\}</math><math>\mathrm{(D) \ } \{x|x\ne -1\;\rm{and}\; x\ne 0\;\rm{and}\; x\ne 1\}</math>
 +
 +
<math>\mathrm{(E) \ }  \{-1,1\}</math>
  
 
== Solution ==
 
== Solution ==
 +
Quickly verifying by plugging in values verifies that <math>-1</math> and <math>1</math> are in the domain.
 +
 +
<math>f(x)+f\left(\frac{1}{x}\right)=x</math>
 +
 +
Plugging in <math> \frac{1}{x} </math> into the [[function]]:
 +
 +
<math>f\left(\frac{1}{x}\right)+f\left(\frac{1}{\frac{1}{x}}\right)=\frac{1}{x}</math>
 +
 +
<math>f\left(\frac{1}{x}\right)+ f(x)= \frac{1}{x}</math>
 +
 +
Since <math>f(x) + f\left(\frac{1}{x}\right) </math> cannot have two values:
 +
 +
<math> x = \frac{1}{x} </math>
 +
 +
<math> x^2 = 1 </math>
 +
 +
<math> x=\pm 1</math>
 +
 +
Therefore, the largest [[set]] of [[real number]]s that can be in the [[domain]] of <math>f</math> is <math>\{-1,1\} \Rightarrow E </math>
 +
 +
== Solution 2==
 +
We know that <math>f(x) + f \left(\frac{1}{x}\right) = x.</math> Plugging in <math>x = \frac{1}{x}</math> we get <cmath>f \left(\frac{1}{x}\right) + f \left(\frac{1}{\frac{1}{x}}\right) = \frac{1}{x}</cmath> <cmath>f \left(\frac{1}{x}\right) + f(x) = \frac{1}{x}.</cmath>
 +
 +
Also notice <cmath>f \left(\frac{1}{x}\right) + f(x) = x</cmath> by the commutative property(this is the same as the equation given in the problem. We are just rearranging). So we can set <math>\frac{1}{x} = x</math> which gives us <math>x = \pm 1</math> which is answer option <math>\boxed{\mathrm{(E) \ }  \{-1,1\}}.</math>
  
 
== See also ==
 
== See also ==
 
* [[2006 AMC 12A Problems]]
 
* [[2006 AMC 12A Problems]]
 +
 +
{{AMC12 box|year=2006|ab=A|num-b=17|num-a=19}}
 +
{{MAA Notice}}
 +
 +
[[Category: Introductory Algebra Problems]]

Latest revision as of 17:34, 18 September 2020

Problem

The function $f$ has the property that for each real number $x$ in its domain, $1/x$ is also in its domain and

$f(x)+f\left(\frac{1}{x}\right)=x$

What is the largest set of real numbers that can be in the domain of $f$?

$\mathrm{(A) \ } \{x|x\ne 0\}\qquad \mathrm{(B) \ } \{x|x<0\}$

$\mathrm{(C) \ } \{x|x>0\}$$\mathrm{(D) \ } \{x|x\ne -1\;\rm{and}\; x\ne 0\;\rm{and}\; x\ne 1\}$

$\mathrm{(E) \ }  \{-1,1\}$

Solution

Quickly verifying by plugging in values verifies that $-1$ and $1$ are in the domain.

$f(x)+f\left(\frac{1}{x}\right)=x$

Plugging in $\frac{1}{x}$ into the function:

$f\left(\frac{1}{x}\right)+f\left(\frac{1}{\frac{1}{x}}\right)=\frac{1}{x}$

$f\left(\frac{1}{x}\right)+ f(x)= \frac{1}{x}$

Since $f(x) + f\left(\frac{1}{x}\right)$ cannot have two values:

$x = \frac{1}{x}$

$x^2 = 1$

$x=\pm 1$

Therefore, the largest set of real numbers that can be in the domain of $f$ is $\{-1,1\} \Rightarrow E$

Solution 2

We know that $f(x) + f \left(\frac{1}{x}\right) = x.$ Plugging in $x = \frac{1}{x}$ we get \[f \left(\frac{1}{x}\right) + f \left(\frac{1}{\frac{1}{x}}\right) = \frac{1}{x}\] \[f \left(\frac{1}{x}\right) + f(x) = \frac{1}{x}.\]

Also notice \[f \left(\frac{1}{x}\right) + f(x) = x\] by the commutative property(this is the same as the equation given in the problem. We are just rearranging). So we can set $\frac{1}{x} = x$ which gives us $x = \pm 1$ which is answer option $\boxed{\mathrm{(E) \ }  \{-1,1\}}.$

See also

2006 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png