Difference between revisions of "1986 AIME Problems/Problem 4"
m (→See also: box) |
m |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
+ | Determine <math>\displaystyle 3x_4+2x_5</math> if <math>\displaystyle x_1</math>, <math>\displaystyle x_2</math>, <math>\displaystyle x_3</math>, <math>\displaystyle x_4</math>, and <math>\displaystyle x_5</math> satisfy the system of equations below. | ||
+ | <center><math>\displaystyle 2x_1+x_2+x_3+x_4+x_5=6</math></center> | ||
+ | <center><math>\displaystyle x_1+2x_2+x_3+x_4+x_5=12</math></center> | ||
+ | <center><math>\displaystyle x_1+x_2+2x_3+x_4+x_5=24</math></center> | ||
+ | <center><math>\displaystyle x_1+x_2+x_3+2x_4+x_5=48</math></center> | ||
+ | <center><math>\displaystyle x_1+x_2+x_3+x_4+2x_5=96</math></center> | ||
== Solution == | == Solution == | ||
− | + | {{solution}} | |
== See also == | == See also == | ||
* [[1986 AIME Problems]] | * [[1986 AIME Problems]] | ||
{{AIME box|year=1986|num-b=3|num-a=5}} | {{AIME box|year=1986|num-b=3|num-a=5}} |
Revision as of 18:52, 10 February 2007
Problem
Determine if
,
,
,
, and
satisfy the system of equations below.





Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
See also
1986 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |