Difference between revisions of "1986 AIME Problems/Problem 5"

m (Solution 1)
(Corrected another user's incorrect edit from 19th January 2019)
Line 3: Line 3:
  
 
== Solution 1 ==
 
== Solution 1 ==
If <math>n+10 \mid n^3+100</math>, <math>\gcd(n^3+100,n+10)=n+10</math>. Using the [[Euclidean algorithm]], we have <math>\gcd(n^3+100,n+10)= \gcd(-10n^2+100,n+10)</math> <math>= \gcd(100n-100,n+10)</math> <math>= \gcd(-900,n+10)</math>, so <math>n+10</math> must divide <math>900</math>. The greatest [[integer]] <math>n</math> for which <math>n+10</math> divides <math>900</math> is <math>\boxed{890}</math>; we can double-check manually and we find that indeed <math>900 \mid 890^3+100</math>.
+
If <math>n+10 \mid n^3+100</math>, <math>\gcd(n^3+100,n+10)=n+10</math>. Using the [[Euclidean algorithm]], we have <math>\gcd(n^3+100,n+10)= \gcd(-10n^2+100,n+10)</math> <math>= \gcd(100n+100,n+10)</math> <math>= \gcd(-900,n+10)</math>, so <math>n+10</math> must divide <math>900</math>. The greatest [[integer]] <math>n</math> for which <math>n+10</math> divides <math>900</math> is <math>\boxed{890}</math>; we can double-check manually and we find that indeed <math>900 \mid 890^3+100</math>.
  
 
== Solution 2 ==
 
== Solution 2 ==

Revision as of 19:40, 17 February 2019

Problem

What is that largest positive integer $n$ for which $n^3+100$ is divisible by $n+10$?

Solution 1

If $n+10 \mid n^3+100$, $\gcd(n^3+100,n+10)=n+10$. Using the Euclidean algorithm, we have $\gcd(n^3+100,n+10)= \gcd(-10n^2+100,n+10)$ $= \gcd(100n+100,n+10)$ $= \gcd(-900,n+10)$, so $n+10$ must divide $900$. The greatest integer $n$ for which $n+10$ divides $900$ is $\boxed{890}$; we can double-check manually and we find that indeed $900 \mid 890^3+100$.

Solution 2

In a similar manner, we can apply synthetic division. We are looking for $\frac{n^3 + 100}{n + 10} = n^2 - 10n - 100 - \frac{900}{n + 10}$. Again, $n + 10$ must be a factor of $900 \Longrightarrow n = \boxed{890}$.


See also

1986 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png