Product-to-sum and Sum-to-Product identities

Sum-to-Product identities

Here are the sum-to-product identities: \begin{align*} \sin (x) + \sin (y) &= 2 \sin \left(\frac{x + y}{2}\right) \cos \left(\frac{x - y}{2}\right) \\ \sin (x) - \sin (y) &= 2 \sin \left(\frac{x - y}{2}\right) \cos \left(\frac{x + y}{2}\right) \\ \cos (x) + \cos (y) &= 2 \cos \left(\frac{x + y}{2}\right) \cos \left(\frac{x - y}{2}\right) \\ \cos (x) - \cos (y) &= -2 \sin \left(\frac{x + y}{2}\right) \sin \left(\frac{x - y}{2}\right) \end{align*}

Product-to-sum identities

The product-to-sum identities are as follows: \begin{align*} \sin (x) \sin (y) &= \frac{1}{2} (\cos (x-y) - \cos (x+y)) \\ \sin (x) \cos (y) &= \frac{1}{2} (\sin (x-y) + \sin (x+y)) \\ \cos (x) \cos (y) &= \frac{1}{2} (\cos (x-y) + \cos (x+y)) \end{align*} They can be derived by expanding out $\cos (x+y)$ and $\cos (x-y)$ or $\sin (x+y)$ and $\sin(x-y)$, then combining them to isolate each term.


This article is a stub. Help us out by expanding it.

See Also