Ceva's Theorem
Ceva's Theorem is an algebraic statement regarding the lengths of cevians in a triangle.
Contents
Statement
A necessary and sufficient condition for where and are points of the respective side lines of a triangle , to be concurrent is that
where all segments in the formula are directed segments.
Proof
Letting the altitude from to have length we have and where the brackets represent area. Thus . In the same manner, we find that . Thus
Likewise, we find that
Thus
Examples
- Suppose AB, AC, and BC have lengths 13, 14, and 15. If and . Find BD and DC.
If and , then , and . From this, we find and . - See the proof of the concurrency of the altitudes of a triangle at the orthocenter.
- See the proof of the concurrency of the perpendicual bisectors of a triangle at the circumcenter.