2016 AMC 10A Problems/Problem 19
Contents
Problem
In rectangle
and
. Point
between
and
, and point
between
and
are such that
. Segments
and
intersect
at
and
, respectively. The ratio
can be written as
where the greatest common factor of
and
is
What is
?
Solution 1
Use similar triangles. Since
Similarly,
. This means that
. As
and
are similar, we see that
. Thus
. Therefore,
so
Solution 2
Coordinate Bash:
We can set coordinates for the points. and
. The line
's equation is
, line
's equation is
, and line
's equation is
. Adding the equations of lines
and
, we find that the coordinates of
are
. Furthermore we find that the coordinates of
are
. Using the Pythagorean Theorem, we get that the length of
is
, and the length of
is
The length of
. Then
The ratio
Then
and
is
and
, respectively. The problem tells us to find
, so
An alternate solution is to perform the same operations, but only solve for the x-coordinates. By similar triangles, the ratios will be the same.
Solution 3
Extend to meet
at point
. Since
and
,
by similar triangles
and
. It follows that
. Now, using similar triangles
and
,
. WLOG let
. Solving for
gives
and
. So our desired ratio is
and
.
Solution 4
Mass Points:
Draw line segment , and call the intersection between
and
point
. In
, observe that
and
. Using mass points, find that
. Again utilizing
, observe that
and
. Use mass points to find that
. Now, draw a line segment with points
,
,
, and
ordered from left to right. Set the values
,
,
and
. Setting both sides segment
equal, we get
. Plugging in and solving gives
,
,
. The question asks for
, so we add
to
and multiply the ratio by
to create integers. This creates
. This sums up to
Solution 5 (Cheap Solution)
Use your ruler (it is recommended you bring ruler and protractor to AMC10 tests) and accurately draw the diagram as one in solution 1, then measure the length of the segments, you should get a ratio of being
, multiplying each side by three the result is
See Also
2016 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.