1983 AHSME Problems/Problem 28

Revision as of 02:07, 9 July 2018 by Jazzachi (talk | contribs) (Added question, made the solution a bit clearer.)

Problem 28

Triangle $\triangle ABC$ in the figure has area $10$. Points $D, E$ and $F$, all distinct from $A, B$ and $C$, are on sides $AB, BC$ and $CA$ respectively, and $AD = 2, DB = 3$. If triangle $\triangle ABE$ and quadrilateral $DBEF$ have equal areas, then that area is

[asy] defaultpen(linewidth(0.7)+fontsize(10)); pair A=origin, B=(10,0), C=(8,7), F=7*dir(A--C), E=(10,0)+4*dir(B--C), D=4*dir(A--B); draw(A--B--C--A--E--F--D); pair point=incenter(A,B,C); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D)); label("$E$", E, dir(point--E)); label("$F$", F, dir(point--F)); label("$2$", (2,0), S); label("$3$", (7,0), S);[/asy]

$\textbf{(A)}\ 4\qquad \textbf{(B)}\ 5\qquad \textbf{(C)}\ 6\qquad \textbf{(D)}\ \frac{5}{3}\sqrt{10}\qquad \textbf{(E)}\ \text{not uniquely determined}$

Solution

Clearly since $[DBEF] = [ABE]$ it follows that $[ADF] = [AFE]$. This implies that $AC \parallel DE$ and so $\frac{BE}{BC} = \frac{BD}{DA} = \frac{3}{5}$. Since $\triangle ABE$ and $\triangle ABC$ have the same height, $[ABE] = \frac{3}{5} \cdot [ABC]=\frac{3}{5}\cdot 10 = 6$, hence our answer is $\fbox{C}$