1963 AHSME Problems/Problem 25

Revision as of 22:33, 8 June 2018 by Rockmanex3 (talk | contribs) (Solution to Problem 25)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Point $F$ is taken in side $AD$ of square $ABCD$. At $C$ a perpendicular is drawn to $CF$, meeting $AB$ extended at $E$. The area of $ABCD$ is $256$ square inches and the area of $\triangle CEF$ is $200$ square inches. Then the number of inches in $BE$ is:

[asy] size(6cm); pair A = (0, 0), B = (1, 0), C = (1, 1), D = (0, 1), E = (1.3, 0), F = (0, 0.7); draw(A--B--C--D--cycle); draw(F--C--E--B); label("$A$", A, SW); label("$B$", B, S); label("$C$", C, N); label("$D$", D, NW); label("$E$", E, SE); label("$F$", F, W); //Credit to MSTang for the asymptote[/asy]

$\textbf{(A)}\ 12 \qquad \textbf{(B)}\ 14 \qquad \textbf{(C)}\ 15 \qquad \textbf{(D)}\ 16 \qquad \textbf{(E)}\ 20$

Solution

Because $ABCD$ is a square, $DC = CB = 16$, $DC \perp DA$, and $CB \perp BA$. Also, because $\angle DCF + \angle FCB = \angle FCB + \angle BCE = 90^\circ$, $\angle DCF = \angle BCE$. Thus, by ASA Congruency, $\triangle DCF \cong \triangle BCF$.

From the congruency, $CF = CE$. Using the area formula for a triangle, $CE = 20$. Finally, by the Pythagorean Theorem, $BE = \sqrt{20^2 - 16^2} = 12$, which is answer choice $\boxed{\textbf{(A)}}$.

See Also

1963 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Problem 26
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png