1978 AHSME Problems/Problem 13

Revision as of 19:46, 4 June 2018 by Apple2017 (talk | contribs) (Answer is (B): -2)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

By Vieta's formulas, $c + d = -a$, $cd = b$, $a + b = -c$, and $ab = d$. From the equation $c + d = -a$, $d = -a - c$, and from the equation $a + b = -c$, $b = -a - c$, so $b = d$.

Then from the equation $cd = b$, $cb = b$. Since $b$ is nonzero, we can divide both sides of the equation by $b$ to get $c = 1$. Similarly, from the equation $ab = d$, $ab = b$, so $a = 1$. Then $b = d = -a - c = -2$. Therefore, $a + b + c + d = 1 + (-2) + 1 + (-2) = \boxed{-2}$. The answer is (B).