2018 AIME I Problems/Problem 8

Revision as of 05:42, 8 March 2018 by Novus677 (talk | contribs) (Solution Diagram)

Let $ABCDEF$ be an equiangular hexagon such that $AB=6, BC=8, CD=10$, and $DE=12$. Denote $d$ the diameter of the largest circle that fits inside the hexagon. Find $d^2$.

Solution 2

Like solution 1, draw out the large equilateral triangle of side length $24$.

Solution D1

2018 AIME I-8.png

- cooljoseph

First of all, draw a good diagram! This is always the key to solving any geometry problem. Once you draw it, realize that $EF=2, FA=16$. Why? Because since the hexagon is equiangular, we can put an equilateral triangle around it, with side length $6+8+10=24$. Then, if you drew it to scale, notice that the "widest" this circle can be according to $AF, CD$ is $7\sqrt{3}$. And it will be obvious that the sides won't be inside the circle, so our answer is $\boxed{147}$.

-expiLnCalc

See Also

2018 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png