1959 AHSME Problems/Problem 2

Revision as of 21:00, 25 February 2018 by Treetor10145 (talk | contribs) (Added Problem, Solution, and See Also)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 2

Through a point $P$ inside the $\triangle ABC$ a line is drawn parallel to the base $AB$, dividing the triangle into two equal areas. If the altitude to $AB$ has a length of $1$, then the distance from $P$ to $AB$ is:

$\textbf{(A)}\ \frac12 \qquad\textbf{(B)}\ \frac14\qquad\textbf{(C)}\ 2-\sqrt2\qquad\textbf{(D)}\ \frac{2-\sqrt2}{2}\qquad\textbf{(E)}\ \frac{2+\sqrt2}{8}$


Solution

$\boxed{\textbf{D}}$


See also

1959 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png