2018 AMC 10A Problems/Problem 16

Revision as of 14:11, 8 February 2018 by Rocketscience (talk | contribs)

Right triangle $ABC$ has leg lengths $AB=20$ and $BC=21$. Including $\overline{AB}$ and $\overline{BC}$, how many line segments with integer length can be drawn from vertex $B$ to a point on hypotenuse $\overline{AC}$?

$\textbf{(A) }5 \qquad \textbf{(B) }8 \qquad \textbf{(C) }12 \qquad \textbf{(D) }13 \qquad \textbf{(E) }15 \qquad$

Solution

The hypotenuse has length $29$. Let $P$ be the foot of the altitude from $B$ to $AC$. Note that $BP$ is the shortest possible length of any segment. Writing the area of the triangle in two ways, we can solve for $BP=\dfrac{20\cdot  21}{29}$, which is between $14$ and $15$.

Let the line segment be $BX$, with $X$ on $AC$. As you move $X$ along the hypotenuse from $A$ to $P$, the length of $BX$ strictly decreases, hitting all the integer values from $20, 19, \dots 15$. Similarly, moving $X$ from $P$ to $C$ hits all the integer values from $15, 16, \dots, 21$. This is a total of $\boxed{13}$ line segments.