2015 AIME I Problems/Problem 3
Problem
There is a prime number such that
is the cube of a positive integer. Find
.
Solution
Let the positive integer mentioned be , so that
. Note that
must be odd, because
is odd.
Rearrange this expression and factor the left side (this factoring can be done using or synthetic divison once it is realized that
is a root):
Because is odd,
is even and
is odd. If
is odd,
must be some multiple of
. However, for
to be any multiple of
other than
would mean
is not a prime. Therefore,
and
.
Then our other factor, , is the prime
:
Another Solution
Since is odd, let
. Therefore,
. From this, we get
. We know
is a prime number and it is not an even number. Since
is an odd number, we know that
.
Therefore, .
Another Another Solution
Let . Realize that
is
. Then we expand, divide both sides by 4, and get
. Clearly
for some
. Then, after substitution and another division by 4, we get
. Since
is prime and there is a factor of
in the LHS,
. Therefore,
.
See also
2015 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.