2017 AMC 10B Problems/Problem 14
Problem
An integer is selected at random in the range
. What is the probability that the remainder when
is divided by
is
?
Solution 1
By [url = https://artofproblemsolving.com/wiki/index.php?title=Fermat%27s_Little_Theorem]Fermat's Little Theorem[/url], when N is relatively prime to 5. However, this happens with probability
.
Solution 2
Note that the patterns for the units digits repeat, so in a sense we only need to find the patterns for the digits .
The pattern for
is
, no matter what power, so
doesn't work. Likewise, the pattern for
is always
. Doing the same for the rest of the digits, we find that the units digits of
,
,
,
,
,
,
and
all have the remainder of
when divided by
, so
.
2017 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.