1954 AHSME Problems/Problem 23

Revision as of 17:25, 15 April 2017 by Xiej (talk | contribs) (Created page with "== Problem 23== If the margin made on an article costing <math>C</math> dollars and selling for <math>S</math> dollars is <math>M=\frac{1}{n}C</math>, then the margin is give...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 23

If the margin made on an article costing $C$ dollars and selling for $S$ dollars is $M=\frac{1}{n}C$, then the margin is given by:

$\textbf{(A)}\ M=\frac{1}{n-1}S\qquad\textbf{(B)}\ M=\frac{1}{n}S\qquad\textbf{(C)}\ M=\frac{n}{n+1}S\\ \textbf{(D)}\ M=\frac{1}{n+1}S\qquad\textbf{(E)}\ M=\frac{n}{n-1}S$

Solution

We are given the margin in terms of the cost of the article. Looking at the answers, it appears we need to find the margin in terms of the selling price. The relationship between cost and selling price is that selling price minus the margin is the cost, $S-M=C$.

Since $M=\frac{1}{n}C$ and $C=S-M$, $M=\frac{1}{n}(S-M)$.

Doing some algebraic manipulation to get $M$ on one side,

$M=\frac{1}{n}{S-M}$

$M=\frac{S}{n}-\frac{M}{n}$

$M+\frac{M}{n}=\frac{S}{n}$

$M(1+\frac{1}{n})=\frac{S}{n}$

$M=\frac{S}{n}\cdot \frac{1}{1+\frac{1}{n}}$

$M=\frac{S}{n+1}$

$M=\frac{1}{n+1}S \implies \boxed{\textbf{(D)} M=\frac{1}{n+1}S}$.

1954 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png