2017 AIME II Problems/Problem 6
Revision as of 11:35, 23 March 2017 by The turtle (talk | contribs) (Created page with "<math>\textbf{Problem 6}</math> Find the sum of all positive integers <math>n</math> such that <math>\sqrt{n^2+85n+2017}</math> is an integer. <math>\textbf{Problem 6 Solutio...")
Find the sum of all positive integers such that is an integer.
Manipulating the given expression, . The expression under the radical must be an square number for the entire expression to be an integer, so . Rearranging, . By difference of squares, . It is easy to check that those are all the factor pairs of 843. Considering each factor pair separately, is found to be and . The two values of that satisfy one of the equations are and . Summing these together, the answer is .