2017 AIME I Problems/Problem 10

Revision as of 16:51, 8 March 2017 by Math129 (talk | contribs) (Created page with "==Problem 10== Let <math>z_1=18+83i,~z_2=18+39i,</math> and <math>z_3=78+99i,</math> where <math>i=\sqrt{-1}.</math> Let <math>z</math> be the unique complex number with the p...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 10

Let $z_1=18+83i,~z_2=18+39i,$ and $z_3=78+99i,$ where $i=\sqrt{-1}.$ Let $z$ be the unique complex number with the properties that $\frac{z_3-z_1}{z_2-z_1}~\cdot~\frac{z-z_2}{z-z_3}$ is a real number and the imaginary part of $z$ is the greatest possible. Find the real part of $z$

Solution

See Also

2017 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions