2009 AMC 12A Problems/Problem 8

Revision as of 17:58, 3 January 2017 by Dragotao (talk | contribs) (Solution 2)
The following problem is from both the 2009 AMC 12A #8 and 2009 AMC 10A #14, so both problems redirect to this page.

Problem

Four congruent rectangles are placed as shown. The area of the outer square is $4$ times that of the inner square. What is the ratio of the length of the longer side of each rectangle to the length of its shorter side?

[asy] unitsize(6mm); defaultpen(linewidth(.8pt));  path p=(1,1)--(-2,1)--(-2,2)--(1,2); draw(p); draw(rotate(90)*p); draw(rotate(180)*p); draw(rotate(270)*p); [/asy]

$\textbf{(A)}\ 3 \qquad \textbf{(B)}\ \sqrt {10} \qquad \textbf{(C)}\ 2 + \sqrt2 \qquad \textbf{(D)}\ 2\sqrt3 \qquad \textbf{(E)}\ 4$

Solution1

$\boxed{(A)}$ The area of the outer square is $4$ times that of the inner square. Therefore the side of the outer square is $\sqrt 4 = 2$ times that of the inner square.

Then the shorter side of the rectangle is $1/4$ of the side of the outer square, and the longer side of the rectangle is $3/4$ of the side of the outer square, hence their ratio is $\boxed{3}$.

Solution 2

Let the side length of the smaller square be $1$, and let the smaller side of the rectangles be $y$. Since the larger square's area is four times larger than the smaller square's, the larger square's side length is $2$. That too is then equivalent to $2y+1$, giving $y=1/2$. Then, the larger piece of the rectangles is $3/2$. $3/2/1/2=\boxed{3}$.

See Also

2009 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2009 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png