1979 AHSME Problems/Problem 3

Revision as of 12:26, 3 January 2017 by E power pi times i (talk | contribs) (Created page with "== Problem 3 == <asy> real s=sqrt(3)/2; draw(box((0,0),(1,1))); draw((1+s,0.5)--(1,1)); draw((1+s,0.5)--(1,0)); draw((0,1)--(1+s,0.5)); label("$A$",(1,1),N); label("$B$",(1...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 3

[asy] real s=sqrt(3)/2; draw(box((0,0),(1,1))); draw((1+s,0.5)--(1,1)); draw((1+s,0.5)--(1,0)); draw((0,1)--(1+s,0.5)); label("$A$",(1,1),N); label("$B$",(1,0),S); label("$C$",(0,0),W); label("$D$",(0,1),W); label("$E$",(1+s,0.5),E); //Credit to TheMaskedMagician for the diagram[/asy]

In the adjoining figure, $ABCD$ is a square, $ABE$ is an equilateral triangle and point $E$ is outside square $ABCD$. What is the measure of $\measuredangle AED$ in degrees?

$\textbf{(A) }10\qquad \textbf{(B) }12.5\qquad \textbf{(C) }15\qquad \textbf{(D) }20\qquad \textbf{(E) }25$

Solution

Solution by e_power_pi_times_i

Notice that $\measuredangle DAE = 90\circ+60\circ = 150\circ$ and that $AD = AE$. Then triangle $ADE$ is isosceles, so $\measuredangle AED = \dfrac{180\circ-150\circ}{2} = \boxed{\textbf{(C) } 15}$.

See also

1979 AHSME (ProblemsAnswer KeyResources)
Preceded by
num-b=2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png