1987 AIME Problems/Problem 1

Revision as of 13:42, 17 September 2016 by Mcmcphie (talk | contribs) (Problem)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

An ordered pair $(m,n)$ of non-negative integers is called "simple" if the addition $m+n$ in base $10$ requires no carrying. Find the number of simple ordered pairs of non-negative integers that sum to $1492$.

Solution

Since no carrying over is allowed, the range of possible values of any digit of $m$ is from $0$ to the respective digit in $1492$ (the values of $n$ are then fixed). Thus, the number of ordered pairs will be $(1 + 1)(4 + 1)(9 + 1)(2 + 1) = 2\cdot 5\cdot 10\cdot 3 = \boxed{300}$.




If you do not understand the above solution, consider this. For every positive integer $m$, there is only one whole number $n$ that you can add to it to obtain the required sum. Also, the total number of non-negative integers that are smaller than or equal to an integer $a$ is $(a + 1)$ because there are $(a - 1)$ positive integers that are less than it, in addition to $0$ and itself.

See also

1987 AIME (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png