1954 AHSME Problems/Problem 37
Revision as of 19:34, 14 April 2016 by Katzrockso (talk | contribs) (Created page with "== Problem 37== Given <math>\triangle PQR</math> with <math>\overline{RS}</math> bisecting <math>\angle R</math>, <math>PQ</math> extended to <math>D</math> and <math>\angle ...")
Problem 37
Given with bisecting , extended to and a right angle, then:
Partial Solution
path anglemark2(pair A, pair B, pair C, real t=8, bool flip=false) { pair M,N; path mark; M=t*0.03*unit(A-B)+B; N=t*0.03*unit(C-B)+B; if(flip) mark=Arc(B,t*0.03,degrees(C-B)-360,degrees(A-B)); else mark=Arc(B,t*0.03,degrees(A-B),degrees(C-B)); return mark; } unitsize(1.5cm); defaultpen(linewidth(.8pt)+fontsize(8pt)); pair P=(0,0), R=(3,2), Q=(4,0); pair S0=bisectorpoint(P,R,Q); pair Sp=extension(P,Q,S0,R); pair D0=bisectorpoint(R,Sp), Np=midpoint(R--Sp); pair D=extension(Np,D0,P,Q), M=extension(Np,D0,P,R); draw(P--R--Q); draw(R--Sp); draw(P--D--M); pair pI=extension(D,M,R,Q); void label("$O$",pI,f); draw(anglemark2(Sp,P,R,17)); label("$p$",P+(0.35,0.1)); draw(anglemark2(R,Q,P,11)); label("$q$",Q+(-0.17,0.1)); draw(anglemark2(R,Np,D,8,true)); label("$n$",Np+(+0.12,0.07)); draw(anglemark2(R,M,D,13,true)); label("$m$",M+(+0.25,0.03)); draw(anglemark2(M,D,P,29)); label("$d$",D+(-0.75,0.095)); pen f=fontsize(10pt); label("$R$",R,N,f); label("$M$",M+(-.067,.067),f); label("$N$",Np+(-.07,.14),f); label("$P$",P,S,f); label("$S$",Sp,S,f); label("$Q$",Q,S,f); label("$D$",D,S,f); (Error making remote request. Unknown error_msg)
Looking at triangle PRQ, we have and from the given statement , so looking at triangle