2016 AIME II Problems/Problem 10
Triangle is inscribed in circle
. Points
and
are on side
with
. Rays
and
meet
again at
and
(other than
), respectively. If
and
, then
, where
and
are relatively prime positive integers. Find
.
Solution 1
Let
,
, and
. Note that since
we have
, so by the Ratio Lemma
Similarly, we can deduce
and hence
.
Now Law of Sines on ,
, and
yields
Hence
so
Hence
and the requested answer is
.
Solution 2
Projecting through we have
which easily gives