2015 USAMO Problems/Problem 6
Revision as of 13:48, 31 January 2016 by Alexzheng2016 (talk | contribs) (Created page with "===Problem 6=== Consider <math>0<\lambda<1</math>, and let <math>A</math> be a multiset of positive integers. Let <math>A_n=\{a\in A: a\leq n\}</math>. Assume that for every <...")
Problem 6
Consider , and let be a multiset of positive integers. Let . Assume that for every , the set contains at most numbers. Show that there are infinitely many for which the sum of the elements in is at most . (A multiset is a set-like collection of elements in which order is ignored, but repetition of elements is allowed and multiplicity of elements is significant. For example, multisets and are equivalent, but and differ.)