2014 AMC 10A Problems/Problem 22

Revision as of 13:47, 26 December 2015 by Ghghghghghghghgh (talk | contribs) (Solution 2 (non-trig))

Problem

In rectangle $ABCD$, $AB=20$ and $BC=10$. Let $E$ be a point on $\overline{CD}$ such that $\angle CBE=15^\circ$. What is $AE$?

$\textbf{(A)}\ \dfrac{20\sqrt3}3\qquad\textbf{(B)}\ 10\sqrt3\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}\ 11\sqrt3\qquad\textbf{(E)}\ 20$

Solution

Note that $\tan 15^\circ=\frac{EC}{10} \Rightarrow EC=20-10 \sqrt 3$. (If you do not know the tangent half-angle formula, it is $\frac{1-\cos a}{\sin a}$). Therefore, we have $DE=10\sqrt 3$. Since $ADE$ is a $30-60-90$ triangle, $AE=2 \cdot AD=2 \cdot 10=\boxed{\textbf{(E)} \: 20}$

Solution 2 (non-trig)

Mark point $F$ on line $\overline{CD}$ such that $\angle EBF = 15^\circ$. By the angle bisector theorem, $\frac{\overline{BC}}{\overline{BF}} = \frac{\overline{CE}}{\overline{EF}}$. Let $\overline{CE}$ have length $x$. Since $\triangle BFC$ is a $30-60-90$ right triangle, $\overline{CF} = \frac{10\sqrt{3}}{3}$ and $\overline{BF} = \frac{20\sqrt{3}}{3}$. Additionally, $\overline{CE} + \overline{EF} = \overline{CF} = \frac{10\sqrt{3}}{3}$. Now, plugging in the obtained values, we get $\frac{10}{\frac{20\sqrt{3}}{3}} = \frac{\overline{CE}}{\overline{EF}} \Rightarrow 2\sqrt{3}\overline{CE} = 3\overline{EF}$ and $\overline{CE} + \overline{EF} = \frac{10\sqrt{3}}{3}$.

See Also

2014 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png