2015 USAMO Problems/Problem 4

Revision as of 16:32, 9 August 2015 by 15Pandabears (talk | contribs) (Solution)

Problem

Find all functions $f:\mathbb{Q}\rightarrow\mathbb{Q}$ such that\[f(x)+f(t)=f(y)+f(z)\]for all rational numbers $x<y<z<t$ that form an arithmetic progression. ($\mathbb{Q}$ is the set of all rational numbers.)

Solution

According to the given, $f(x-a)+f(x+0.5a)=f(x-0.5a)+f(x)$, where $x$ and $a$ are rational. Likewise, $f(x-0.5a)+f(x+a)=f(x+0.5a)+f(x)$. Hence $f(x+a)-f(x)= f(x)-f(x-a)$, namely $2f(x)=f(x-a)+f(x+a)$. Let $f(0)=C$, then consider $F(x)=f(x)-C$, where $F(0)=0$ and $2F(x)=F(x-a)+F(x+a)$. We have:

\[F(2x)=F(x)+[F(x)-F(0)]=2F(x)\] \[F(3x)=F(2x)+[F(2x)-F(x)]=3F(x)\] By induction, $F(nx)=nF(x)$ for all in.tegers $k$. Therefore, for nonzero integer $m$, $\frac{1}{m}F(mx)=F(x)$, namely $F\left(\frac{x}{m}\right)=\left(\frac{1}{m}\right)F(x)$. Hence $F\left(\frac{n}{m}\right)=\left(\frac{n}{m}\right)F(1)$. Letting $F(1)=k$, we obtain $F(x)=kx$, where $k$ is the slope of the linear functions, and $f(x)=kx+C$.