1986 AHSME Problems/Problem 28
Problem
is a regular pentagon. and are the perpendiculars dropped from onto extended and extended, respectively. Let be the center of the pentagon. If , then equals
To solve the problem, we compute the area of regular pentagon in two different ways. First, we can divide regular pentagon into five congruent triangles. [asy] unitsize(2 cm);
pair A, B, C, D, E, O, P, Q, R;
A = dir(90); B = dir(90 - 360/5); C = dir(90 - 2*360/5); D = dir(90 - 3*360/5); E = dir(90 - 4*360/5); O = (0,0); P = (C + D)/2; Q = (A + reflect(B,C)*(A))/2; R = (A + reflect(D,E)*(A))/2;
draw((2*R - E)--D--C--(2*Q - B)); draw(A--P); draw(A--Q); draw(A--R); draw(B--A--E); draw((O--B),dashed); draw((O--C),dashed); draw((O--D),dashed); draw((O--E),dashed);
label("", A, N); label("", B, dir(0)); label("", C, SE); label("", D, SW); label("", E, W); dot("", O, NE); label("", P, S); label("", Q, dir(0)); label("", R, W); label("", (O + P)/2, dir(0)); [/asy] If is the side length of the regular pentagon, then each of the triangles , , , , and has base and height 1, so the area of regular pentagon is .
Next, we divide regular pentagon into triangles , , and . [asy] unitsize(2 cm);
pair A, B, C, D, E, O, P, Q, R;
A = dir(90); B = dir(90 - 360/5); C = dir(90 - 2*360/5); D = dir(90 - 3*360/5); E = dir(90 - 4*360/5); O = (0,0); P = (C + D)/2; Q = (A + reflect(B,C)*(A))/2; R = (A + reflect(D,E)*(A))/2;
draw((2*R - E)--D--C--(2*Q - B)); draw(A--P); draw(A--Q); draw(A--R); draw(B--A--E); draw(A--C,dashed); draw(A--D,dashed);
label("", A, N); label("", B, dir(0)); label("", C, SE); label("", D, SW); label("", E, W); dot("", O, dir(0)); label("", P, S); label("", Q, dir(0)); label("", R, W); label("", (O + P)/2, dir(0)); [/asy] Triangle has base and height . Triangle has base and height . Triangle has base and height . Therefore, the area of regular pentagon is also Hence, which means , or . The answer is (C).
See also
1986 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 27 |
Followed by Problem 29 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.