2015 AMC 10A Problems/Problem 2

Revision as of 18:45, 1 March 2015 by Devenware (talk | contribs) (Problem)

Problem

A box contains a collection of triangular and square tiles. There are $25$ tiles in the box, containing $84$ edges total. How many square tiles are there in the box?

$\textbf{(A)}\ 3\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 7\qquad\textbf{(D)}\ 9\qquad\textbf{(E)}\ 11$

Solution

Let $a$ be the amount of triangular tiles and $b$ be the amount of square tiles.

Triangles have $3$ edges and squares have $4$ edges, so we have a system of equations.

We have $a + b$ tiles total, so $a + b = 25$.

We have $3a + 4b$ edges total, so $3a + 4b = 84$.

Solving gives, $a = 16$ and $b = 9$, so the answer is $\boxed{\textbf{(D) }9}$.


Alternate Solution

If all of the tiles were triangles, there would be $75$ edges. This is not enough, so there need to be some squares. Trading a triangle for a square results in one additional edge each time, so we must trade out $9$ triangles for squares. Answer: $\boxed{\textbf{(D) }9}$


See Also

2015 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png