2015 AMC 12A Problems/Problem 18
The problem asks us to find the sum of every integer value of such that the roots of are both integers.
The quadratic formula gives the roots of the quadratic equation: $x = \frac{a \± \sqrt{a^2 - 8a}}{2}$ (Error compiling LaTeX. Unknown error_msg)
As long as the numerator is an even integer, the roots are both integers. But first of all, the radical term in the numerator needs to be an integer; that is, the discriminant equals , for some nonnegative integer .
From this last equation, we are given a hint of the Pythagorean theorem. Thus, must be a Pythagorean triple unless .
In the case , the equation simplifies to . From this equation, we have . For both and , $\frac{a \± \sqrt{a^2 - 8a}}{2}$ (Error compiling LaTeX. Unknown error_msg) yields two integers, so these values satisfy the constraints from the original problem statement. (Note: the two zero roots count as "two integers.")
If is a positive integer, then only one Pythagorean triple could match the triple because the only Pythagorean triple with a as one of the values is the classic triple. Here, and . Hence, . Again, $\frac{a \± \sqrt{a^2 - 8a}}{2}$ (Error compiling LaTeX. Unknown error_msg) yields two integers for both and , so these two values also satisfy the original constraints.
There are a total of four possible values for : and . Hence, the sum of all of the possible values of is 16 (C).