2015 AMC 12A Problems/Problem 21
Problem
A circle of radius r passes through both foci of, and exactly four points on, the ellipse with equation The set of all possible values of is an interval What is
$\textbf{(A)}\ 5\sqrt{2}+4\qquad\textbf{(B)}\ \sqrt{17}+7\qquad\textbf{(C)}\ 6\sqrt{2}+3\qquad\textbf{(D)}}\ \sqrt{15}+8\qquad\textbf{(E)}\ 12$ (Error compiling LaTeX. Unknown error_msg)
Solution
We can graph the ellipse by setting and finding possible values for , and vice versa. The points where the ellipse intersects the coordinate axes are , and . Recall that the two foci lie on the major axis of the ellipse and are a distance of away from the center of the ellipse, where , with being the length of the major (longer) axis and being the minor (shorter) axis of the ellipse. We have that . Hence, the coordinates of both of our foci are and . In order for a circle to pass through both of these foci, we must have that the center of this circle lies on the y-axis.
The minimum possible value of belongs to the circle whose diameter's endpoints are the foci of this ellipse, so . The value for is achieved when the circle passes through the foci and only three points on the ellipse, which is possible when the circle touches or . Which point we use does not change what value of is attained, so we use . Here, we must find the point such that the distance from to both foci and is the same. Now, we have the two following equations. Substituting for , we have that
Solving the above simply yields that , so our answer is .