1987 AHSME Problems/Problem 21

Revision as of 07:49, 23 October 2014 by Timneh (talk | contribs) (Created page with "==Problem== There are two natural ways to inscribe a square in a given isosceles right triangle. If it is done as in Figure 1 below, then one finds that the area of the square...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

There are two natural ways to inscribe a square in a given isosceles right triangle. If it is done as in Figure 1 below, then one finds that the area of the square is $441 \text{cm}^2$. What is the area (in $\text{cm}^2$) of the square inscribed in the same $\triangle ABC$ as shown in Figure 2 below?

[asy] draw((0,0)--(10,0)--(0,10)--cycle); draw((-25,0)--(-15,0)--(-25,10)--cycle); draw((-20,0)--(-20,5)--(-25,5)); draw((6.5,3.25)--(3.25,0)--(0,3.25)--(3.25,6.5)); label("A", (-25,10), W); label("B", (-25,0), W); label("C", (-15,0), E); label("Figure 1", (-20, -5)); label("Figure 2", (5, -5)); label("A", (0,10), W); label("B", (0,0), W); label("C", (10,0), E); [/asy]

$\textbf{(A)}\ 378 \qquad \textbf{(B)}\ 392 \qquad \textbf{(C)}\ 400 \qquad \textbf{(D)}\ 441 \qquad \textbf{(E)}\ 484$


See also

1987 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png