1958 AHSME Problems/Problem 25

Revision as of 05:19, 3 October 2014 by Timneh (talk | contribs) (Created page with "== Problem == If <math> \log_{k}{x}\cdot \log_{5}{k} \equal{} 3</math>, then <math> x</math> equals: <math> \textbf{(A)}\ k^6\qquad \textbf{(B)}\ 5k^3\qquad \textbf{(C)}\ k^3...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

If $\log_{k}{x}\cdot \log_{5}{k} \equal{} 3$ (Error compiling LaTeX. Unknown error_msg), then $x$ equals:

$\textbf{(A)}\ k^6\qquad  \textbf{(B)}\ 5k^3\qquad  \textbf{(C)}\ k^3\qquad  \textbf{(D)}\ 243\qquad  \textbf{(E)}\ 125$

Solution

$\fbox{}$

See Also

1958 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Problem 26
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png