1991 AHSME Problems/Problem 23

Revision as of 14:14, 28 September 2014 by Timneh (talk | contribs) (Created page with "== Problem == <asy> draw((0,0)--(0,1)--(1,1)--(1,0)--cycle),dots); MP("B",(0,0),SW);MP("A",(0,1),NW);MP("D",(1,1),NE);MP("C",(1,0),SE); MP("E",(0,.5),W);MP("F",(.5,0),S); dot((.5...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

draw((0,0)--(0,1)--(1,1)--(1,0)--cycle),dots);
MP("B",(0,0),SW);MP("A",(0,1),NW);MP("D",(1,1),NE);MP("C",(1,0),SE);
MP("E",(0,.5),W);MP("F",(.5,0),S);
dot((.5,0));dot((0,.5));
 (Error making remote request. Unknown error_msg)


If $ABCD$ is a $2X2$ square, $E$ is the midpoint of $\overline{AB}$,$F$ is the midpoint of $\overline{BC}$,$\overline{AF}$ and $\overline{DE}$ intersect at $I$, and $\overline{BD}$ and $\overline{AF}$ intersect at $H$, then the area of quadrilateral $BEIH$ is

$\text{(A) } \frac{1}{3}\quad \text{(B) } \frac{2}{5}\quad \text{(C) } \frac{7}{15}\quad \text{(D) } \frac{8}{15}\quad \text{(E) } \frac{3}{5}$

Solution

$\fbox{}$

See also

1991 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png