1992 AHSME Problems/Problem 27

Revision as of 20:43, 27 September 2014 by Timneh (talk | contribs) (Created page with "== Problem == A circle of radius <math>r</math> has chords <math>\overline{AB}</math> of length <math>10</math> and <math>\overline{CD}</math> of length 7. When <math>\overline{...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

A circle of radius $r$ has chords $\overline{AB}$ of length $10$ and $\overline{CD}$ of length 7. When $\overline{AB}$ and $\overline{CD}$ are extended through $B$ and $C$, respectively, they intersect at $P$, which is outside of the circle. If $\angle{APD}=60^\circ$ and $BP=8$, then $r^2=$

$\text{(A) } 70\quad \text{(B) } 71\quad \text{(C) } 72\quad \text{(D) } 73\quad \text{(E) } 74$

Solution

$\fbox{D}$

See also

1992 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 26
Followed by
Problem 28
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png