1967 AHSME Problems/Problem 18

Revision as of 00:23, 23 September 2014 by Timneh (talk | contribs) (Created page with "== Problem == If <math>x^2-5x+6<0</math> and <math>P=x^2+5x+6</math> then <math>\textbf{(A)}\ P \; \text{can take any real value} \qquad \textbf{(B)}\ 20<P<30\\ \textbf{(C)}\ 0<...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

If $x^2-5x+6<0$ and $P=x^2+5x+6$ then

$\textbf{(A)}\ P \; \text{can take any real value} \qquad \textbf{(B)}\ 20<P<30\\ \textbf{(C)}\ 0<P<20 \qquad \textbf{(D)}\ P<0 \qquad \textbf{(E)}\ P>30$

Solution

$\fbox{B}$

See also

1967 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png