1966 AHSME Problems/Problem 40

Revision as of 01:36, 15 September 2014 by Timneh (talk | contribs) (Solution)

Problem

In this figure $AB$ is a diameter of a circle, centered at $O$, with radius $a$. A chord $AD$ is drawn and extended to meet the tangent to the circle at $B$ in point $C$. Point $E$ is taken on $AC$ so the $AE=DC$. Denoting the distances of $E$ from the tangent through $A$ and from the diameter $AB$ by $x$ and $y$, respectively, we can deduce the relation:

$\text{(A) } y^2=\frac{x^3}{2a-x} \quad \text{(B) } y^2=\frac{x^3}{2a+x} \quad \text{(C) } y^4=\frac{x^2}{2a-x} \\ \text{(D) } x^2=\frac{y^2}{2a-x} \quad \text{(E) } x^2=\frac{y^2}{2a+x}$

Solution

$\fbox{A}$

See also

1966 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 39
Followed by
Problem 40
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png