1992 AIME Problems/Problem 6
Contents
Problem
For how many pairs of consecutive integers in is no carrying required when the two integers are added?
Solution
Solution 1
Consider what carrying means: If carrying is needed to add two numbers with digits and
, then
or
or
. 6. Consider
.
has no carry if
. This gives
possible solutions.
With , there obviously must be a carry. Consider
.
have no carry. This gives
possible solutions. Considering
,
have no carry. Thus, the solution is
.
Solution 2
Consider the ordered pair where
and
are digits. We are trying to find all ordered pairs where
does not require carrying. For the addition to require no carrying,
, so
unless
ends in
, which we will address later. Clearly, if
, then adding
will require no carrying. We have
possibilities for the value of
,
for
, and
for
, giving a total of
, but we are not done yet.
We now have to consider the cases where , specifically when
. We can see that
, and
all work, giving a grand total of
ordered pairs.
1992 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.