1994 AHSME Problems/Problem 12

Revision as of 18:20, 20 July 2014 by TheMaskedMagician (talk | contribs) (Solution)

Problem

If $i^2=-1$, then $(i-i^{-1})^{-1}=$

$\textbf{(A)}\ 0 \qquad\textbf{(B)}\ -2i \qquad\textbf{(C)}\ 2i \qquad\textbf{(D)}\ -\frac{i}{2} \qquad\textbf{(E)}\ \frac{i}{2}$

Solution

We simplify step by step as follows: \begin{align*}(i-i^{-1})^{-1}&=\frac{1}{i-i^{-1}}\\&=\frac{1}{i-\frac{1}{i}}\\&=\frac{1}{\left(\frac{i^2-1}{i}\right)}\\&=\frac{i}{i^2-1}\\&=\boxed{\textbf{(D) }-\frac{i}{2}.}\end{align*}

--Solution by TheMaskedMagician