2014 AIME II Problems/Problem 11
Problem 11
In ,
and
. $\abs{RD}=1$ (Error compiling LaTeX. Unknown error_msg). Let
be the midpoint of segment
. Point
lies on side
such that
. Extend segment
through
to point
such that
. Then
, where
and
are relatively prime positive integers, and
is a positive integer. Find
.
Solution
Let be the foot of the perpendicular from
to
, so
. Since triangle
is isosceles,
is the midpoint of
, and
. Thus,
is a parallelogram and
. (someone incorporate LATEX please) We can then use coordinates. Let O be the foot of altitude RO and set O as the origin. Now we notice special right triangles! In particular, DO = 1/2 and EO = RO = √3/2, so D(1/2, 0), E(-√3/2, 0), and R(0, √3/2). M = midpoint(D, R) = (1/4, √3/4) and slope(ME) = √3/4 / (1/4 + √3/2) = √3 / (1 + 2√3), so slope(RC) = -(1 + 2√3)/√3. Instead of finding the equation of the line, we use the definition of slope: for every CO = x to the left, we go (1 + 2√3)/√3 * x = √3/2 up. Thus, x = 3/2 / (1 + 2√3) = 3 / (4√3 + 2) = 3(4√3 - 2) / 44 = (6√3 - 3) / 22. DO = 1/2 - x = 1/2 - (6√3 - 3)/22 = (14 - 6√3) / 22, and
, so the answer is
.