2014 AIME II Problems/Problem 11
Problem 11
In , and . $\abs{RD}=1$ (Error compiling LaTeX. Unknown error_msg). Let be the midpoint of segment . Point lies on side such that . Extend segment through to point such that . Then , where and are relatively prime positive integers, and is a positive integer. Find .
Solution
Let be the foot of the perpendicular from to , so . Since triangle is isosceles, is the midpoint of , and . Thus, is a parallelogram and .
We can then use coordinates to find that , so the answer is .