2014 AIME II Problems/Problem 14
14. In △ABC, AB=10, ∠A=30∘, and ∠C=45∘. Let H, D, and M be points on the line BC such that AH⊥BC, ∠BAD=∠CAD, and . Point
is the midpoint of the segment
, and point
is on ray
such that PN⊥BC. Then
, where
and
are relatively prime positive integers. Find
.
http://www.artofproblemsolving.com/Wiki/images/5/59/AOPS_wiki.PNG ( This is the diagram.)
As we can see,
is the midpoint of
and
is the midpoint of
is a
triangle, so ∠HAB=15∘.
is
.
and
are parallel lines so
is
also.
Then if we use those informations we get and
and
or
Now we know that HM=AP, we can find for HM which is simpler to find.
We can use point B to split it up as HM=HB+BM,
We can chase those lengths and we would get
, so
, so
, so
Then using right triangle , we have HB=10 sin (15∘)
So HB=10 sin (15∘)=.
And we know that .
Finally if we calculate .
. So our final answer is
.
Thank you.
--Gamjawon 22:47, 29 March 2014 (EDT)