1985 AIME Problems/Problem 1

Revision as of 14:12, 6 March 2014 by MSTang (talk | contribs) (Solution)

Problem

Let $x_1=97$, and for $n>1$, let $x_n=\frac{n}{x_{n-1}}$. Calculate the product $x_1x_2x_3x_4x_5x_6x_7x_8$.

Solution

Since $x_n=\frac{n}{x_{n-1}}$, $x_n \cdot x_{n - 1} = n$. Setting $n = 2, 4, 6$ and $8$ in this equation gives us respectively $x_1x_2 = 2$, $x_3x_4 = 4$, $x_5x_6 = 6$ and $x_7x_8 = 8$ so \[x_1x_2x_3x_4x_5x_6x_7x_8 = 2\cdot4\cdot6\cdot8 = \boxed{384}.\] Notice that the value of $x_1$ was completely unneeded!

See also

1985 AIME (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions