2007 AMC 10A Problems/Problem 24

Revision as of 13:47, 1 March 2014 by Rajithegde (talk | contribs) (Solution)

Problem

Circles centered at $A$ and $B$ each have radius $2$, as shown. Point $O$ is the midpoint of $\overline{AB}$, and $OA = 2\sqrt {2}$. Segments $OC$ and $OD$ are tangent to the circles centered at $A$ and $B$, respectively, and $EF$ is a common tangent. What is the area of the shaded region $ECODF$?

2007 AMC 10A problem 24.png

$\text{(A)}\ \frac {8\sqrt {2}}{3} \qquad \text{(B)}\ 8\sqrt {2} - 4 - \pi \qquad \text{(C)}\ 4\sqrt {2} \qquad \text{(D)}\ 4\sqrt {2} + \frac {\pi}{8} \qquad \text{(E)}\ 8\sqrt {2} - 2 - \frac {\pi}{2}$

Solution

The area we are trying to find is simply $ABFE-(\arc{AEC}+\triangle{ACO}+\triangle{BDO}+\arc{BFD})$ (Error compiling LaTeX. Unknown error_msg). Obviously, $\overline{EF}\parallel\overline{AB}$. Thus, $ABFE$ is a rectangle, and so its area is $b\times{h}=2\times{(AO+OB)}=2\times{2(2\sqrt{2})}=8\sqrt{2}$.

Since $\overline{OC}$ is tangent to circle $A$, $\triangle{ACO}$ is a right $\triangle$. We know $AO=2\sqrt{2}$ and $AC=2$, so $\triangle{ACO}$ is isosceles, a $45$-$45$ right $\triangle$, and has $\overline{CO}$ with length $2$. The area of $\triangle{ACO}=\frac{1}{2}bh=2$. By symmetry, $\triangle{ACO}\cong\triangle{BDO}$, and so the area of $\triangle{BDO}$ is also $2$.

$\arc{AEC}$ (Error compiling LaTeX. Unknown error_msg) (or $\arc{BFD}$ (Error compiling LaTeX. Unknown error_msg), for that matter) is $\frac{1}{8}$ the area of its circle. Thus $\arc{AEC}$ (Error compiling LaTeX. Unknown error_msg) and $\arc{BFD}$ (Error compiling LaTeX. Unknown error_msg) both have an area of $\frac{\pi}{2}$.

Plugging all of these areas back into the original equation yields $8\sqrt{2}-(\frac{\pi}{2}+2+2+\frac{\pi}{2})=8\sqrt{2}-(4+\pi)=\boxed{8\sqrt{2}-4-\pi}\ \mathrm{(B)}$.

See also

2007 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png