2014 AMC 12A Problems/Problem 14

Revision as of 19:33, 7 February 2014 by Infiniteturtle (talk | contribs) (Created page with "==Problem== Let <math>a<b<c</math> be three integers such that <math>a,b,c</math> is an arithmetic progression and <math>a,c,b</math> is a geometric progression. What is the sm...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Let $a<b<c$ be three integers such that $a,b,c$ is an arithmetic progression and $a,c,b$ is a geometric progression. What is the smallest possible value of $c$?

$\textbf{(A) }-2\qquad \textbf{(B) }1\qquad \textbf{(C) }2\qquad \textbf{(D) }4\qquad \textbf{(E) }6\qquad$

Solution

We have $b-a=c-b$, so $a=2b-c$. Since $a,c,b$ is geometric, $c^2=ab=(2b-c)b \Rightarrow 2b^2-bc-c^2=(2b+c)(b-c)=0$. Since $a<b<c$, we can't have $b=c$ and thus $c=-2b$. then our arithmetic progression is $4b,b,-2b$. Since $4b < b < -2b$, $b < 0$. The smallest possible value of $c=-2b$ is $(-2)(-1)=2$, or $\boxed{\textbf{(C)}}$.

(Solution by AwesomeToad)