1958 AHSME Problems/Problem 12
Problem
If $P \equal{} \frac{s}{(1 \plus{} k)^n}$ (Error compiling LaTeX. Unknown error_msg) then equals:
$\textbf{(A)}\ \frac{\log{\left(\frac{s}{P}\right)}}{\log{(1 \plus{} k)}}\qquad \textbf{(B)}\ \log{\left(\frac{s}{P(1 \plus{} k)}\right)}\qquad \textbf{(C)}\ \log{\left(\frac{s \minus{} P}{1 \plus{} k}\right)}\qquad \\ \textbf{(D)}\ \log{\left(\frac{s}{P}\right)} \plus{} \log{(1 \plus{} k)}\qquad \textbf{(E)}\ \frac{\log{(s)}}{\log{(P(1 \plus{} k))}}$ (Error compiling LaTeX. Unknown error_msg)
Solution
Take the of each side.
See also
1958 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.