2013 AMC 12A Problems/Problem 19
Problem
In , , and . A circle with center and radius intersects at points and . Moreover and have integer lengths. What is ?
Solution
Solution 1
Let . Let the circle intersect at and the diameter including intersect the circle again at . Use power of a point on point C to the circle centered at A.
So .
Obviously so we have three solution pairs for . By the Triangle Inequality, only yields a possible length of .
Therefore, the answer is D) 61.
Solution 2
Let be the perpendicular from to , , , then by Pythagorean Theorem,
Subtracting the two equations, we get ,
then the rest is similar to the above solution by power of points.
See also
2013 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.